ImportanceScreening with low-dose computed tomography (CT) has been shown to reduce mortality from lung cancer in randomized clinical trials in which the rate of adherence to follow-up recommendations was over 90%; however, adherence to Lung Computed Tomography Screening Reporting & Data System (Lung-RADS) recommendations has been low in practice. Identifying patients who are at risk of being nonadherent to screening recommendations may enable personalized outreach to improve overall screening adherence. ObjectiveTo identify factors associated with patient nonadherence to Lung-RADS recommendations across multiple screening time points. Design, Setting, and ParticipantsThis cohort study was conducted at a single US academic medical center across 10 geographically distributed sites where lung cancer screening is offered. The study enrolled individuals who underwent low-dose CT screening for lung cancer between July 31, 2013, and November 30, 2021. ExposuresLow-dose CT screening for lung cancer. Main Outcomes and MeasuresThe main outcome was nonadherence to follow-up recommendations for lung cancer screening, defined as failing to complete a recommended or more invasive follow-up examination (ie, diagnostic dose CT, positron emission tomography–CT, or tissue sampling vs low-dose CT) within 15 months (Lung-RADS score, 1 or 2), 9 months (Lung-RADS score, 3), 5 months (Lung-RADS score, 4A), or 3 months (Lung-RADS score, 4B/X). Multivariable logistic regression was used to identify factors associated with patient nonadherence to baseline Lung-RADS recommendations. A generalized estimating equations model was used to assess whether the pattern of longitudinal Lung-RADS scores was associated with patient nonadherence over time. ResultsAmong 1979 included patients, 1111 (56.1%) were aged 65 years or older at baseline screening (mean [SD] age, 65.3 [6.6] years), and 1176 (59.4%) were male. The odds of being nonadherent were lower among patients with a baseline Lung-RADS score of 1 or 2 vs 3 (adjusted odds ratio [AOR], 0.35; 95% CI, 0.25-0.50), 4A (AOR, 0.21; 95% CI, 0.13-0.33), or 4B/X, (AOR, 0.10; 95% CI, 0.05-0.19); with a postgraduate vs college degree (AOR, 0.70; 95% CI, 0.53-0.92); with a family history of lung cancer vs no family history (AOR, 0.74; 95% CI, 0.59-0.93); with a high age-adjusted Charlson Comorbidity Index score (≥4) vs a low score (0 or 1) (AOR, 0.67; 95% CI, 0.46-0.98); in the high vs low income category (AOR, 0.79; 95% CI, 0.65-0.98); and referred by physicians from pulmonary or thoracic-related departments vs another department (AOR, 0.56; 95% CI, 0.44-0.73). Among 830 eligible patients who had completed at least 2 screening examinations, the adjusted odds of being nonadherent to Lung-RADS recommendations at the following screening were increased in patients with consecutive Lung-RADS scores of 1 to 2 (AOR, 1.38; 95% CI, 1.12-1.69). Conclusions and RelevanceIn this retrospective cohort study, patients with consecutive negative lung cancer screening results were more likely to be nonadherent with follow-up recommendations. These individuals are potential candidates for tailored outreach to improve adherence to recommended annual lung cancer screening.
more »
« less
Assessing eligibility for lung cancer screening using parsimonious ensemble machine learning models: A development and validation study
BackgroundRisk-based screening for lung cancer is currently being considered in several countries; however, the optimal approach to determine eligibility remains unclear. Ensemble machine learning could support the development of highly parsimonious prediction models that maintain the performance of more complex models while maximising simplicity and generalisability, supporting the widespread adoption of personalised screening. In this work, we aimed to develop and validate ensemble machine learning models to determine eligibility for risk-based lung cancer screening. Methods and findingsFor model development, we used data from 216,714 ever-smokers recruited between 2006 and 2010 to the UK Biobank prospective cohort and 26,616 high-risk ever-smokers recruited between 2002 and 2004 to the control arm of the US National Lung Screening (NLST) randomised controlled trial. The NLST trial randomised high-risk smokers from 33 US centres with at least a 30 pack-year smoking history and fewer than 15 quit-years to annual CT or chest radiography screening for lung cancer. We externally validated our models among 49,593 participants in the chest radiography arm and all 80,659 ever-smoking participants in the US Prostate, Lung, Colorectal and Ovarian (PLCO) Screening Trial. The PLCO trial, recruiting from 1993 to 2001, analysed the impact of chest radiography or no chest radiography for lung cancer screening. We primarily validated in the PLCO chest radiography arm such that we could benchmark against comparator models developed within the PLCO control arm. Models were developed to predict the risk of 2 outcomes within 5 years from baseline: diagnosis of lung cancer and death from lung cancer. We assessed model discrimination (area under the receiver operating curve, AUC), calibration (calibration curves and expected/observed ratio), overall performance (Brier scores), and net benefit with decision curve analysis.Models predicting lung cancer death (UCL-D) and incidence (UCL-I) using 3 variables—age, smoking duration, and pack-years—achieved or exceeded parity in discrimination, overall performance, and net benefit with comparators currently in use, despite requiring only one-quarter of the predictors. In external validation in the PLCO trial, UCL-D had an AUC of 0.803 (95% CI: 0.783, 0.824) and was well calibrated with an expected/observed (E/O) ratio of 1.05 (95% CI: 0.95, 1.19). UCL-I had an AUC of 0.787 (95% CI: 0.771, 0.802), an E/O ratio of 1.0 (95% CI: 0.92, 1.07). The sensitivity of UCL-D was 85.5% and UCL-I was 83.9%, at 5-year risk thresholds of 0.68% and 1.17%, respectively, 7.9% and 6.2% higher than the USPSTF-2021 criteria at the same specificity. The main limitation of this study is that the models have not been validated outside of UK and US cohorts. ConclusionsWe present parsimonious ensemble machine learning models to predict the risk of lung cancer in ever-smokers, demonstrating a novel approach that could simplify the implementation of risk-based lung cancer screening in multiple settings.
more »
« less
- Award ID(s):
- 1722516
- PAR ID:
- 10481513
- Publisher / Repository:
- PLOS
- Date Published:
- Journal Name:
- PLOS Medicine
- Volume:
- 20
- Issue:
- 10
- ISSN:
- 1549-1676
- Page Range / eLocation ID:
- e1004287
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
PurposeTo evaluate cardiovascular disease (CVD) risk factors among smokeless tobacco (ST) users. Exclusive ST users were compared to exclusive cigarette smokers and non-tobacco users. DesignCross-sectional study SampleData were used from 16,336 adult males who participated in one of the National Health and Nutrition Examination Surveys (NHANES) from 2003 to 2018. MeasuresBiochemically verified tobacco use, CVD risk factors (hypertension, cholesterol levels, BMI categories), physical activity, cotinine concentration, and sociodemographic variables. AnalysisWeighted analysis of the aggregate data was performed. ST users were compared with cigarette smokers and nontobacco users for their association with CVD risk factors. Associations were examined using univariate and multiple logistic regression with odds ratios (OR) and 95% confidence intervals (CI) reported. ResultsPrevalence of exclusive ST use was 4.4% whereas, exclusive smoking was 22.2%. Among ST users, 36.2% were hypertensive, 24.5% had high cholesterol levels, and most of them were overweight (31.1%) or obese (52.6%). ST users were more likely to have hypertension compared to smokers (aOR = 1.48, 95%CI: 1.12, 1.95) and nontobacco users (aOR = 1.41, 95%CI: 1.09, 1.83) adjusted for other covariates. ST users were twice more likely to be obese than nontobacco users (aOR = 2.18, 95%CI: 1.52, 3.11). ST users had significantly higher cotinine concentration than smokers. ConclusionStudy findings indicate substantial association of ST use among males with hypertension and obesity which are independent risk factors of CVD.more » « less
-
e20551 Background: Enzyme activity is at the center of all biological processes. When these activities are misregulated by changes in sequence, expression, or activity, pathologies emerge. Misregulation of protease enzymes such as Matrix Metalloproteinases and Cathepsins play a key role in the pathophysiology of cancer. We describe here a novel class of graphene-based, cost effective biosensors that can detect altered protease activation in a blood sample from early stage lung cancer patients. Methods: The Gene Expression Omnibus (GEO) tool was used to identify proteases differentially expressed in lung cancer and matched normal tissue. Biosensors were assembled on a graphene backbone annotated with one of a panel of fluorescently tagged peptides. The graphene quenches fluorescence until the peptide is either cleaved by active proteases or altered by post-translational modification. 19 protease biosensors were evaluated on 431 commercially collected serum samples from non-lung cancer controls (69%) and pathologically confirmed lung cancer cases (31%) tested over two independent cohorts. Serum was incubated with each of the 19 biosensors and enzyme activity was measured indirectly as a continuous variable by a fluorescence plate reader. Analysis was performed using Emerge, a proprietary predictive and classification modeling system based on massively parallel evolving “Turing machine” algorithms. Each analysis stratified allocation into training and testing sets, and reserved an out-of-sample validation set for reporting. Results: 256 clinical samples were initially evaluated including 35% cancer cases evenly distributed across stages I (29%), II (26%), III (24%) and IV (21%). The case controls included common co-morbidies in the at-risk population such as COPD, chronic bronchitis, and benign nodules (19%). Using the Emerge classification analysis, biosensor biomarkers alone (no clinical factors) demonstrated Sensitivity (Se.) = 92% (CI 82%-99%) and Specificity (Sp.) = 82% (CI 69%-91%) in the out-of-sample set. An independent cohort of 175 clinical cases (age 67±8, 52% male) focused on early detection (26% cancer, 70% Stage I, 30% Stage II/III) were similarly evaluated. Classification showed Se. = 100% (CI 79%-100%) and Sp. = 93% (CI 80%-99%) in the out-of-sample set. For the entire dataset of 175 samples, Se. = 100% (CI 92%-100%) and Sp. = 97% (CI 92%-99%) was observed. Conclusions: Lung cancer can be treated if it is diagnosed when still localized. Despite clear data showing screening for lung cancer by Low Dose Computed Tomography (LDCT) is effective, screening compliance remains very low. Protease biosensors provide a cost effective additional specialized tool with high sensitivity and specificity in detection of early stage lung cancer. A large prospective trial of at-risk smokers with follow up is being conducted to evaluate a commercial version of this assay.more » « less
-
null (Ed.)Abstract Background Interstitial lung abnormalities (ILA) can be detected on computed tomography (CT) in lung cancer patients and have an association with mortality in advanced non-small cell lung cancer (NSCLC) patients. The aim of this study is to demonstrate the significance of ILA for mortality in patients with stage I NSCLC using Boston Lung Cancer Study cohort. Methods Two hundred and thirty-one patients with stage I NSCLC from 2000 to 2011 were investigated in this retrospective study (median age, 69 years; 93 males, 138 females). ILA was scored on baseline CT scans prior to treatment using a 3-point scale (0 = no evidence of ILA, 1 = equivocal for ILA, 2 = ILA) by a sequential reading method. ILA score 2 was considered the presence of ILA. The difference of overall survival (OS) for patients with different ILA scores were tested via log-rank test and multivariate Cox proportional hazards models were used to estimate hazard ratios (HRs) including ILA score, age, sex, smoking status, and treatment as the confounding variables. Results ILA was present in 22 out of 231 patients (9.5%) with stage I NSCLC. The presence of ILA was associated with shorter OS (patients with ILA score 2, median 3.85 years [95% confidence interval (CI): 3.36 – not reached (NR)]; patients with ILA score 0 or 1, median 10.16 years [95%CI: 8.65 - NR]; P < 0.0001). In a Cox proportional hazards model, the presence of ILA remained significant for increased risk for death (HR = 2.88, P = 0.005) after adjusting for age, sex, smoking and treatment. Conclusions ILA was detected on CT in 9.5% of patients with stage I NSCLC. The presence of ILA was significantly associated with a shorter OS and could be an imaging marker of shorter survival in stage I NSCLC.more » « less
-
ImportancePersistence of COVID-19 symptoms beyond 2 months, or long COVID, is increasingly recognized as a common sequela of acute infection. ObjectivesTo estimate the prevalence of and sociodemographic factors associated with long COVID and to identify whether the predominant variant at the time of infection and prior vaccination status are associated with differential risk. Design, Setting, and ParticipantsThis cross-sectional study comprised 8 waves of a nonprobability internet survey conducted between February 5, 2021, and July 6, 2022, among individuals aged 18 years or older, inclusive of all 50 states and the District of Columbia. Main Outcomes and MeasuresLong COVID, defined as reporting continued COVID-19 symptoms beyond 2 months after the initial month of symptoms, among individuals with self-reported positive results of a polymerase chain reaction test or antigen test. ResultsThe 16 091 survey respondents reporting test-confirmed COVID-19 illness at least 2 months prior had a mean age of 40.5 (15.2) years; 10 075 (62.6%) were women, and 6016 (37.4%) were men; 817 (5.1%) were Asian, 1826 (11.3%) were Black, 1546 (9.6%) were Hispanic, and 11 425 (71.0%) were White. From this cohort, 2359 individuals (14.7%) reported continued COVID-19 symptoms more than 2 months after acute illness. Reweighted to reflect national sociodemographic distributions, these individuals represented 13.9% of those who had tested positive for COVID-19, or 1.7% of US adults. In logistic regression models, older age per decade above 40 years (adjusted odds ratio [OR], 1.15; 95% CI, 1.12-1.19) and female gender (adjusted OR, 1.91; 95% CI, 1.73-2.13) were associated with greater risk of persistence of long COVID; individuals with a graduate education vs high school or less (adjusted OR, 0.67; 95% CI, 0.56-0.79) and urban vs rural residence (adjusted OR, 0.74; 95% CI, 0.64-0.86) were less likely to report persistence of long COVID. Compared with ancestral COVID-19, infection during periods when the Epsilon variant (OR, 0.81; 95% CI, 0.69-0.95) or the Omicron variant (OR, 0.77; 95% CI, 0.64-0.92) predominated in the US was associated with diminished likelihood of long COVID. Completion of the primary vaccine series prior to acute illness was associated with diminished risk for long COVID (OR, 0.72; 95% CI, 0.60-0.86). Conclusions and RelevanceThis study suggests that long COVID is prevalent and associated with female gender and older age, while risk may be diminished by completion of primary vaccination series prior to infection.more » « less