skip to main content


Title: (Re)defining Developmental Mathematics: A Critical Examination of the Research Literature
Although "developmental math" is widely discussed in higher-education circles, exactly what developmental math encompasses is often underdeveloped. In this theoretical report, we use a sample of highly cited works on developmental math to identify common characterizations of the term "developmental math" in the literature. We then interrogate and problematize each characterization, particularly in terms of whether they serve equity-related goals such as access to college credentials and math learning. We close by proposing an alternative characterization of developmental math and discuss the theoretical implications. We see this as a first step towards conversations about how developmental math could be conceptualized.  more » « less
Award ID(s):
1760491
NSF-PAR ID:
10481788
Author(s) / Creator(s):
; ; ;
Editor(s):
Cook, S.; Infante, N.
Publisher / Repository:
RUME, http://sigmaa.maa.org/rume/Site/Proceedings.html
Date Published:
Journal Name:
Proceedings for the 25th Annual Conference on Research in Undergraduate Mathematics Education
Subject(s) / Keyword(s):
["developmental math","equity","time capital","postsecondary","college level"]
Format(s):
Medium: X
Location:
Omaha, Nebraska, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Over the next 10 years, the Vera C. Rubin Observatory (Rubin) will observe ∼10 million active galactic nuclei (AGNs) with a regular and high cadence. During this time, the intensities of most of these AGNs will fluctuate stochastically. Here, we explore the prospects to quantify precisely these fluctuations with Rubin measurements of AGN light curves. To do so, we suppose that each light curve is described by a damped random walk with a given fluctuation amplitude and correlation time. Theoretical arguments and some current measurements suggest that the correlation timescale and fluctuation amplitude for each AGN may be correlated with other observables. We use an expected-information analysis to calculate the precision with which these parameters will be inferred from the measured light curves. We find that the measurements will be so precise as to allow the AGNs to be separated into up to ∼10 different correlation-timescale bins. We then show that if the correlation time varies as some power of the luminosity, the normalization and power-law index of that relation will be determined to(104%). These results suggest that with Rubin, precisely measured variability parameters will take their place alongside spectroscopy in the detailed characterization of individual AGNs and in the study of AGN population statistics. Analogous analyses will be enabled by other time-domain projects, such as CMB-S4.

     
    more » « less
  2. Abstract

    Double perovskite oxides, with generalized formula A2BB$$^{\prime}$$O6, attract wide interest due to their multiferroic and charge transfer properties. They offer a wide range of potential applications such as spintronics and electrically tunable devices. However, great practical limitations are encountered, since a spontaneous order of the B-site cations is notoriously hard to achieve. In this joint experimental-theoretical work, we focused on the characterization of double perovskites La2TiFeO6and La2VCuO6films grown by pulsed laser deposition and interpretation of the observed B-site disorder and partial charge transfer between the B-site ions. A random structure sampling method was used to show that several phases compete due to their corresponding configurational entropy. In order to capture a representative picture of the most relevant competing microstates in realistic experimental conditions, this search included the potential formation of non-stoichiometric phases as well, which could also be directly related to the observed partial charge transfer. We optimized the information encapsulated in the potential energy landscape, captured via structure sampling, by evaluating both enthalpic and entropic terms. These terms were employed as a metric for the competition of different phases. This approach, applied herein specifically to La2TiFeO6, highlights the presence of highly entropic phases above the ground state which can explain the disorder observed frequently in the broader class of double perovskite oxides.

     
    more » « less
  3. Despite the recent proliferation of research concerning integrating computational thinking (CT) into K-5th grade curriculum, there is little literature concerning how to evaluate the quality of CT integrated curricula, especially curricula integrating CT into language arts and social studies content areas. In this paper, we present a theoretically derived rubric for the evaluation of CT integrated curricula for grades K-5 across the curriculum (math, science, language arts, social studies). Our rubric is divided into two sections. The first section provides guidelines for identifying the integration type (disciplinary, multidisciplinary, interdisciplinary, or transdisciplinary). The second section presents six categories of evaluation that further subsume nine sub-categories. The principal categories of evaluation include the following: conceptual coherence, role of computational technology, assessment, use of multiple representations, play, and equity. We include the play category as an aspect of developmental appropriateness. Play is an important pedagogical approach for learning in the early grades. Our work takes place in the context of the Computer Science (CS) for All initiative in the United States which emphasizes the goal of improving racial and gender diversity in CS participation. Therefore, creating integrated lessons that address equity is important. Our paper describes rubric development from the theoretical perspectives that underlie the inclusion of each type, category, and sub-category. Our evaluative rubric can guide future efforts to integrate CT/CS into the elementary curricula. Researchers can utilize our rubric to evaluate and analyze CT-integrated curricula, and educators can benefit from using this rubric as a guideline for curriculum development. 
    more » « less
  4. Developmental math preparation is integral in a pre-engineering pathway. This paper analyzes the efforts to improve remedial math passing rates at two tribal colleges in North Dakota participating in a pre-engineering collaborative. Previous work in progress addressed portions of these approaches, but here a more complete set of quantitative data is presented along with further analysis using the theoretical framework of Tribal Critical Race Theory. 
    more » « less
  5. The significance of prezygotic isolation for speciation has been recognized at least since the Modern Synthesis. However, fundamental questions remain. For example, how are genetic associations between traits that contribute to prezygotic isolation maintained? What is the source of genetic variation underlying the evolution of these traits? And how do prezygotic barriers affect patterns of gene flow? We address these questions by reviewing genetic features shared across plants and animals that influence prezygotic isolation. Emerging technologies increasingly enable the identification and functional characterization of the genes involved, allowing us to test established theoretical expectations. Embedding these genes in their developmental context will allow further predictions about what constrains the evolution of prezygotic isolation. Ongoing improvements in statistical and computational tools will reveal how pre- and postzygotic isolation may differ in how they influence gene flow across the genome. Finally, we highlight opportunities for progress by combining theory with appropriate data. 
    more » « less