skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On stars and spikes: Resolving the skeletal morphology of planktonic Acantharia using synchrotron X-ray nanotomography and deep learning image segmentation
Acantharia ( Acantharea ) are wide-spread marine protozoa, presenting one of the rare examples of stron- tium sulfate mineralization in the biosphere. Their endoskeletons consist of 20 spicules arranged accord- ing to a unique geometric pattern named Müller’s principle. Given the diverse mineral architecture of the Acantharia class, we set out to examine the complex three-dimensional skeletal morphology at the nanometer scale using synchrotron X-ray nanotomography, followed by image segmentation based on deep learning methods. The present study focuses on how the spicules emanate from the robust central junction in the orders Symphyacanthida and Arthracanthida , the geometry of lateral spicule wings as well as pockets of interspicular space, which may be involved in cell compartmentalization. Through these morphometric studies, we observed subtle deviations from the previously described spatial arrangement of the spicules. According to our data, spicule shapes are adjusted in opposite spicules as to accommodate the overall spicule arrangement. In all types examined, previously unknown interspicular interstices were found in areas where radial spicules meet, which could have implications for the crystal growth mecha- nism and overall endoskeletal integrity. A deeper understanding of the spiculogenesis in Acantharia can provide biomimetic routes towards complex inorganic shapes.  more » « less
Award ID(s):
2137663
PAR ID:
10481821
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Acta Biomaterialia
Volume:
159
Issue:
C
ISSN:
1742-7061
Page Range / eLocation ID:
74 to 82
Subject(s) / Keyword(s):
Biomineralization Crystallization X-ray nanotomography Deep learning image segmentation Strontium sulfate Biomaterials Biointerface Morphogenesis
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Spicules, the smallest observable jetlike dynamic features ubiquitous in the chromosphere, are supposedly an important potential source for small-scale solar wind transients, with supporting evidence yet needed. We studied the high-resolution Hαimages (0.″10) and magnetograms (0.″29) from the Big Bear Solar Observatory to find that spicules are an ideal candidate for the solar wind magnetic switchbacks detected by the Parker Solar Probe (PSP). It is not that spicules are a miniature of coronal jets, but that they have unique properties not found in other solar candidates in explaining solar origin of switchbacks. (1) The spicules under this study originate from filigrees, all in a single magnetic polarity. Since filigrees are known as footpoints of open fields, the spicule guiding field lines can form a unipolar funnel, which is needed to create an SB patch, a group of field lines that switch from one common base polarity to the other polarity. (2) The spicules come in a cluster lined up along a supergranulation boundary, and the simulated waiting times from their spatial intervals exhibit a number distribution continuously decreasing from a few seconds to ∼30 minutes, similar to that of switchbacks. (3) From a time–distance map for spicules, we estimate their occurrence rate as 0.55 spicules Mm−2s−1, which is sufficiently high for detection by PSP. In addition, the dissimilarity of spicules with coronal jets, including the absence of base brightening and low correlation with EUV emission, is briefly discussed. 
    more » « less
  2. Abstract Citellinema Hall, 1918 includes 6 valid species of gastrointestinal nematodes of sciurids. Two species occur in the Palearctic and 4 in the Nearctic, 3 of which occur minimally across Colorado, Idaho and Oregon and 1, Citellinema bifurcatum , has a wide distribution across North America. Members of the genus are didelphic, possess a cephalic vesicle, a terminal spine-like process in females and feature robust spicules, consisting of a proximal end fused and semicylindrical shaft connected to a lamina supported by 2 terminal filiform processes. Typically, the size of the spicules is used to differentiate species. As part of the Beringian Coevolution Project, specimens provisionally identified as C. bifurcatum were collected through intensive field sampling of mammals and associated parasites from across localities spanning the Holarctic. These specimens revealed considerable genetic variability at both mitochondrial and nuclear loci, supporting the identification of deeply divergent clades. Examination of these new specimens, along with the holotypes of C. bifurcatum and Citellinema quadrivittati indicates that Citellinema monacis (previously synonymized with C . bifurcatum ) should be resurrected and 3 additional species described. We suggest that the apparent bifurcated nature of the spicule should be considered a generic diagnostic trait, while the proportional length of the lamina relative to that of the spicule is used as a specific character. We demonstrate the critical need for continued inventory of often poorly known assemblages of hosts and parasites, contributing to a growing baseline of archival specimens, collections and information that make explorations of faunal structure and diversity possible. 
    more » « less
  3. Abstract Euplectella aspergillummarine sponge spicules are renowned for their remarkable strength and toughness. These spicules exhibit a unique concentric layering structure, which contributes to their exceptional mechanical resistance. In this study, finite element method simulations were used to comprehensively investigate the effect of nested cylindrical structures on the mechanical properties of spicules. This investigation leveraged scanning electron microscopy images to guide the computational modeling of the microstructure and the results were validated by three-point bending tests of 3D-printed spicule-inspired structures. The numerical analyses showed that the nested structure of spicules induces stress and strain jumps on the layer interfaces, reducing the load on critical zones of the fiber and increasing its toughness. It was found that this effect shows a tapering enhancement as the number of layers increases, which combines with a threshold related to the 3D-printing manufacturability to suggest a compromise for optimal performance. A comprehensive evaluation of the mechanical properties of these fibers can assist in developing a new generation of bioinspired structures with practical real-world applications. 
    more » « less
  4. Abstract We investigate high-resolution spectroscopic and imaging observations from the CRisp Imaging SpectroPolarimeter (CRISP) instrument to study the dynamics of chromospheric spicule-type events. It is widely accepted that chromospheric fine structures are waveguides for several types of magnetohydrodynamic (MHD) oscillations, which can transport energy from the lower to upper layers of the Sun. We provide a statistical study of 30 high-frequency waves associated with spicule-type events. These high-frequency oscillations have two components of transverse motions: the plane-of-sky (POS) motion and the line-of-sight (LOS) motion. We focus on single isolated spicules and track the POS using time–distance analysis and in the LOS direction using Doppler information. We use moment analysis to find the relation between the two motions. The composition of these two motions suggests that the wave has a helical structure. The oscillations do not have phase differences between points along the structure. This may be the result of the oscillation being a standing mode, or that propagation is mostly in the perpendicular direction. There is evidence of fast magnetoacoustic wave fronts propagating across these structures. To conclude, we hypothesize that the compression and rarefaction of passing magnetoacoustic waves may influence the appearance of spicule-type events, not only by contributing to moving them in and out of the wing of the spectral line but also through the creation of density enhancements and an increase in opacity in the Hαline. 
    more » « less
  5. Sponges are animals that inhabit many aquatic environments while filtering small particles and ejecting metabolic wastes. They are composed of cells in a bulk extracellular matrix, often with an embedded scaffolding of stiff, siliceous spicules. We hypothesize that the mechanical response of this heterogeneous tissue to hydrodynamic flow influences cell proliferation in a manner that generates the body of a sponge. Towards a more complete picture of the emergence of sponge morphology, we dissected a set of species and subjected discs of living tissue to physiological shear and uniaxial deformations on a rheometer. Various species exhibited rheological properties such as anisotropic elasticity, shear softening and compression stiffening, negative normal stress, and non-monotonic dissipation as a function of both shear strain and frequency. Erect sponges possessed aligned, spicule-reinforced fibres which endowed three times greater stiffness axially compared with orthogonally. By contrast, tissue taken from shorter sponges was more isotropic but time-dependent, suggesting higher flow sensitivity in these compared with erect forms. We explore ecological and physiological implications of our results and speculate about flow-induced mechanical signalling in sponge cells. 
    more » « less