skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: CRISP: Curriculum based Sequential neural decoders for Polar code family
Polar codes are widely used state-of-the-art codes for reliable communication that have recently been included in the 5th generation wireless standards (5G). However, there still remains room for design of polar decoders that are both efficient and reliable in the short blocklength regime. Motivated by recent successes of data-driven channel decoders, we introduce a novel 𝐂ur𝐑𝐈culum based 𝐒equential neural decoder for 𝐏olar codes (CRISP). We design a principled curriculum, guided by information-theoretic insights, to train CRISP and show that it outperforms the successive-cancellation (SC) decoder and attains near-optimal reliability performance on the Polar(32,16) and Polar(64,22) codes. The choice of the proposed curriculum is critical in achieving the accuracy gains of CRISP, as we show by comparing against other curricula. More notably, CRISP can be readily extended to Polarization-Adjusted-Convolutional (PAC) codes, where existing SC decoders are significantly less reliable. To the best of our knowledge, CRISP constructs the first data-driven decoder for PAC codes and attains near-optimal performance on the PAC(32,16) code.  more » « less
Award ID(s):
2002664
PAR ID:
10481827
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Proceedings of Machine Learning Research
Date Published:
Journal Name:
Proceedings of the 40th International Conference on Machine Learning
Volume:
202
Page Range / eLocation ID:
12823-12845
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, a novel data-driven methodology for designing polar codes is proposed. The methodology is suitable for the case where the channel is given as a ”black-box” and the designer has access to the channel for generating observations of its inputs and outputs, but does not have access to the explicit channel model. The methodology consists of two components: (1) a neural estimation of the sufficient statistic of the channel outputs using recent advances in Kullback Leibler (KL) estimation, and (2) a neural successive cancellation (NSC) decoder using three neural networks that replace the core elements of the successive cancellation (SC) decoder. The parameters of the neural networks are determined during a training phase where the mutual information of the effective channels is estimated. We demonstrate the performance of the algorithm on memoryless channels and on finite state channels. Then, we compare the results with the optimal decoding given by the SC and SC trellis decoders, respectively. 
    more » « less
  2. We present the Hybrid Polar Decoder (HyPD), a hybrid classical-quantum decoder design for Polar error correction codes, which are becoming widespread in today’s 5G and tomorrow’s 6G networks. HyPD employs CMOS processing for the Polar decoder’s binary tree traversal, and Quantum Annealing (QA) processing for the Quantum Polar Decoder (QPD)-a Maximum-Likelihood QA-based Polar decoder submodule. QPD’s design efficiently transforms a Polar decoder into a quadratic polynomial optimization form, then maps this polynomial on to the physical QA hardware via QPD-MAP, a customized problem mapping scheme tailored to QPD. We have experimentally evaluated HyPD on a state-of-the-art QA device with 5,627 qubits, for 5G-NR Polar codes with block length of 1,024 bits, in Rayleigh fading channels. Our results show that HyPD outperforms Successive Cancellation List decoders of list size eight by half an order of bit error rate magnitude, and achieves a 1,500-bytes frame delivery rate of 99.1%, at 1 dB signal-to-noise ratio. Further studies present QA compute time considerations. We also propose QPD-HW, a novel QA hardware topology tailored for the task of decoding Polar codes. QPD-HW is sparse, flexible to code rate and block length, and may be of potential interest to the designers of tomorrow’s 6G wireless networks. 
    more » « less
  3. This paper introduces a neural polar decoder (NPD) for deletion channels with a constant deletion rate. Existing polar decoders for deletion channels exhibit high computational complexity of O(N4), where N is the block length. This limits the application of polar codes for deletion channels to short-to-moderate block lengths. In this work, we demonstrate that employing NPDs for deletion channels can reduce the computational complexity. First, we extend the architecture of the NPD to support deletion channels. Specifically, the NPD architecture consists of four neural networks (NNs), each replicating fundamental successive cancellation (SC) decoder operations. To support deletion channels, we change the architecture of only one. The computational complexity of the NPD is O(ANlogN), where the parameter A represents a computational budget determined by the user and is independent of the channel. We evaluate the new extended NPD for deletion channels with deletion rates δ∈{0.01,0.1} and we verify the NPD with the ground truth given by the trellis decoder by Tal et al. We further show that due to the reduced complexity of the NPD, we are able to incorporate list decoding and further improve performance. We believe that the extended NPD presented here could have applications in future technologies like DNA storage. 
    more » « less
  4. Non-uniform message quantization techniques such as reconstruction-computation-quantization (RCQ) improve error-correction performance and decrease hardware complexity of low-density parity-check (LDPC) decoders that use a flooding schedule. Layered MinSum RCQ (L-msRCQ) enables message quantization to be utilized for layered decoders and irregular LDPC codes. We investigate field-programmable gate array (FPGA) implementations of L-msRCQ decoders. Three design methods for message quantization are presented, which we name the Lookup, Broadcast, and Dribble methods. The decoding performance and hardware complexity of these schemes are compared to a layered offset MinSum (OMS) decoder. Simulation results on a (16384, 8192) protograph-based raptor-like (PBRL) LDPC code show that a 4-bit L-msRCQ decoder using the Broadcast method can achieve a 0.03 dB improvement in error-correction performance while using 12% fewer registers than the OMS decoder. A Broadcast-based 3-bit L-msRCQ decoder uses 15% fewer lookup tables, 18% fewer registers, and 13% fewer routed nets than the OMS decoder, but results in a 0.09 dB loss in performance. 
    more » « less
  5. Iterative decoders for finite length quantum low-density parity-check (QLDPC) codes are attractive because their hardware complexity scales only linearly with the number of physical qubits. However, they are impacted by short cycles, detrimental graphical configurations known as trapping sets (TSs) present in a code graph as well as symmetric degeneracy of errors. These factors significantly degrade the decoder decoding probability performance and cause so-called error floor. In this paper, we establish a systematic methodology by which one can identify and classify quantum trapping sets (QTSs) according to their topological structure and decoder used. The conventional definition of a TS from classical error correction is generalized to address the syndrome decoding scenario for QLDPC codes. We show that the knowledge of QTSs can be used to design better QLDPC codes and decoders. Frame error rate improvements of two orders of magnitude in the error floor regime are demonstrated for some practical finite-length QLDPC codes without requiring any post-processing. 
    more » « less