skip to main content


Title: CRISP: Curriculum based Sequential neural decoders for Polar code family
Polar codes are widely used state-of-the-art codes for reliable communication that have recently been included in the 5th generation wireless standards (5G). However, there still remains room for design of polar decoders that are both efficient and reliable in the short blocklength regime. Motivated by recent successes of data-driven channel decoders, we introduce a novel 𝐂ur𝐑𝐈culum based 𝐒equential neural decoder for 𝐏olar codes (CRISP). We design a principled curriculum, guided by information-theoretic insights, to train CRISP and show that it outperforms the successive-cancellation (SC) decoder and attains near-optimal reliability performance on the Polar(32,16) and Polar(64,22) codes. The choice of the proposed curriculum is critical in achieving the accuracy gains of CRISP, as we show by comparing against other curricula. More notably, CRISP can be readily extended to Polarization-Adjusted-Convolutional (PAC) codes, where existing SC decoders are significantly less reliable. To the best of our knowledge, CRISP constructs the first data-driven decoder for PAC codes and attains near-optimal performance on the PAC(32,16) code.  more » « less
Award ID(s):
2002664
NSF-PAR ID:
10481827
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Proceedings of Machine Learning Research
Date Published:
Journal Name:
Proceedings of the 40th International Conference on Machine Learning
Volume:
202
Page Range / eLocation ID:
12823-12845
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, a novel data-driven methodology for designing polar codes is proposed. The methodology is suitable for the case where the channel is given as a ”black-box” and the designer has access to the channel for generating observations of its inputs and outputs, but does not have access to the explicit channel model. The methodology consists of two components: (1) a neural estimation of the sufficient statistic of the channel outputs using recent advances in Kullback Leibler (KL) estimation, and (2) a neural successive cancellation (NSC) decoder using three neural networks that replace the core elements of the successive cancellation (SC) decoder. The parameters of the neural networks are determined during a training phase where the mutual information of the effective channels is estimated. We demonstrate the performance of the algorithm on memoryless channels and on finite state channels. Then, we compare the results with the optimal decoding given by the SC and SC trellis decoders, respectively. 
    more » « less
  2. We present the Hybrid Polar Decoder (HyPD), a hybrid classical-quantum decoder design for Polar error correction codes, which are becoming widespread in today’s 5G and tomorrow’s 6G networks. HyPD employs CMOS processing for the Polar decoder’s binary tree traversal, and Quantum Annealing (QA) processing for the Quantum Polar Decoder (QPD)-a Maximum-Likelihood QA-based Polar decoder submodule. QPD’s design efficiently transforms a Polar decoder into a quadratic polynomial optimization form, then maps this polynomial on to the physical QA hardware via QPD-MAP, a customized problem mapping scheme tailored to QPD. We have experimentally evaluated HyPD on a state-of-the-art QA device with 5,627 qubits, for 5G-NR Polar codes with block length of 1,024 bits, in Rayleigh fading channels. Our results show that HyPD outperforms Successive Cancellation List decoders of list size eight by half an order of bit error rate magnitude, and achieves a 1,500-bytes frame delivery rate of 99.1%, at 1 dB signal-to-noise ratio. Further studies present QA compute time considerations. We also propose QPD-HW, a novel QA hardware topology tailored for the task of decoding Polar codes. QPD-HW is sparse, flexible to code rate and block length, and may be of potential interest to the designers of tomorrow’s 6G wireless networks. 
    more » « less
  3. We present the Hybrid Polar Decoder (HyPD), a hybrid of classical CMOS and quantum annealing (QA) computational structures for decoding Polar error correction codes, which are becoming widespread in today’s 5G and tomorrow’s 6G networks. HyPD considers CMOS for the Polar code’s binary tree traversal, and QA for executing a Quantum Polar Decoder (QPD)–a novel QA-based maximum likelihood submodule. Our QPD design efficiently transforms a Polar decoder into a quadratic polynomial optimization form amenable to the QA’s optimization process. We experimentally evaluate HyPD on a state-of-the-art QA device with 5,627 qubits, for Polar codes of block length 1,024 bits, in Rayleigh fading channels. Our results show that HyPD outperforms successive cancellation list decoders of list size eight by half an order of bit error rate magnitude at 1 dB SNR. Further experimental studies address QA compute time at various code rates, and with increased QA qubit numbers. 
    more » « less
  4. In this paper, we define a window code to be the portion of a Spatially-coupled low-density parity check (SC-LDPC) code seen by a single iteration of a windowed decoder. We consider the design of SC-LDPC codes for windowed decoding via optimization of the window code. In particular, because iterative decoding is optimal on codes with cycle-free graph representations, we ask fundamental questions about the construction and parameters of cycle-free window codes. We show that it is possible to have an SC-LDPC code with cycles and with cycle-free window codes. We consider the relationship between the distance of the window code and the distance of the SC-LDPC code. Further, we show that SC-LDPC codes with MDS window codes exist, and all such codes are asymptotically bad. This work gives insight into the tradeoffs between window code parameters and performance of the SC-LDPC code.

     
    more » « less
  5. Iterative decoders for finite length quantum low-density parity-check (QLDPC) codes are attractive because their hardware complexity scales only linearly with the number of physical qubits. However, they are impacted by short cycles, detrimental graphical configurations known as trapping sets (TSs) present in a code graph as well as symmetric degeneracy of errors. These factors significantly degrade the decoder decoding probability performance and cause so-called error floor. In this paper, we establish a systematic methodology by which one can identify and classify quantum trapping sets (QTSs) according to their topological structure and decoder used. The conventional definition of a TS from classical error correction is generalized to address the syndrome decoding scenario for QLDPC codes. We show that the knowledge of QTSs can be used to design better QLDPC codes and decoders. Frame error rate improvements of two orders of magnitude in the error floor regime are demonstrated for some practical finite-length QLDPC codes without requiring any post-processing. 
    more » « less