skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Beyond expectations: residual dynamic mode decomposition and variance for stochastic dynamical systems
Abstract Koopman operators linearize nonlinear dynamical systems, making their spectral information of crucial interest. Numerous algorithms have been developed to approximate these spectral properties, and dynamic mode decomposition (DMD) stands out as the poster child of projection-based methods. Although the Koopman operator itself is linear, the fact that it acts in an infinite-dimensional space of observables poses challenges. These include spurious modes, essential spectra, and the verification of Koopman mode decompositions. While recent work has addressed these challenges for deterministic systems, there remains a notable gap in verified DMD methods for stochastic systems, where the Koopman operator measures the expectation of observables. We show that it is necessary to go beyond expectations to address these issues. By incorporating variance into the Koopman framework, we address these challenges. Through an additional DMD-type matrix, we approximate the sum of a squared residual and a variance term, each of which can be approximated individually using batched snapshot data. This allows verified computation of the spectral properties of stochastic Koopman operators, controlling the projection error. We also introduce the concept of variance-pseudospectra to gauge statistical coherency. Finally, we present a suite of convergence results for the spectral information of stochastic Koopman operators. Our study concludes with practical applications using both simulated and experimental data. In neural recordings from awake mice, we demonstrate how variance-pseudospectra can reveal physiologically significant information unavailable to standard expectation-based dynamical models.  more » « less
Award ID(s):
2045646 2308440
PAR ID:
10481862
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Nonlinear Dynamics
Volume:
112
Issue:
3
ISSN:
0924-090X
Format(s):
Medium: X Size: p. 2037-2061
Size(s):
p. 2037-2061
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Koopman decomposition is a nonlinear generalization of eigen-decomposition, and is being increasingly utilized in the analysis of spatio-temporal dynamics. Well-known techniques such as the dynamic mode decomposition (DMD) and its linear variants provide approximations to the Koopman operator, and have been applied extensively in many fluid dynamic problems. Despite being endowed with a richer dictionary of nonlinear observables, nonlinear variants of the DMD, such as extended/kernel dynamic mode decomposition (EDMD/KDMD) are seldom applied to large-scale problems primarily due to the difficulty of discerning the Koopman-invariant subspace from thousands of resulting Koopman eigenmodes. To address this issue, we propose a framework based on a multi-task feature learning to extract the most informative Koopman-invariant subspace by removing redundant and spurious Koopman triplets. In particular, we develop a pruning procedure that penalizes departure from linear evolution. These algorithms can be viewed as sparsity-promoting extensions of EDMD/KDMD. Furthermore, we extend KDMD to a continuous-time setting and show a relationship between the present algorithm, sparsity-promoting DMD and an empirical criterion from the viewpoint of non-convex optimization. The effectiveness of our algorithm is demonstrated on examples ranging from simple dynamical systems to two-dimensional cylinder wake flows at different Reynolds numbers and a three-dimensional turbulent ship-airwake flow. The latter two problems are designed such that very strong nonlinear transients are present, thus requiring an accurate approximation of the Koopman operator. Underlying physical mechanisms are analysed, with an emphasis on characterizing transient dynamics. The results are compared with existing theoretical expositions and numerical approximations. 
    more » « less
  2. Matni, Nikolai and (Ed.)
    Transfer operators offer linear representations and global, physically meaningful features of nonlinear dynamical systems. Discovering transfer operators, such as the Koopman operator, require careful crafted dictionaries of observables, acting on states of the dynamical system. This is ad hoc and requires the full dataset for evaluation. In this paper, we offer an optimization scheme to allow joint learning of the observables and Koopman operator with online data. Our results show we are able to reconstruct the evolution and represent the global features of complex dynamical systems. 
    more » « less
  3. Matni, Nikolai; Morari, Manfred; Pappas, George J. (Ed.)
    Transfer operators offer linear representations and global, physically meaningful features of nonlinear dynamical systems. Discovering transfer operators, such as the Koopman operator, require careful crafted dictionaries of observables, acting on states of the dynamical system. This is ad hoc and requires the full dataset for evaluation. In this paper, we offer an optimization scheme to allow joint learning of the observables and Koopman operator with online data. Our results show we are able to reconstruct the evolution and represent the global features of complex dynamical systems. 
    more » « less
  4. null (Ed.)
    Using the newly introduced ``occupation kernels,'' the present manuscript develops an approach to dynamic mode decomposition (DMD) that treats continuous time dynamics, without discretization, through the Liouville operator. The technical and theoretical differences between Koopman based DMD for discrete time systems and Liouville based DMD for continuous time systems are highlighted, which includes an examination of these operators over several reproducing kernel Hilbert spaces. 
    more » « less
  5. Developing an accurate dynamic model for an Autonomous Underwater Vehicle (AUV) is challenging due to the diverse array of forces exerted on it in an underwater environment. These forces include hydrodynamic effects such as drag, buoyancy, and added mass. Consequently, achieving precision in predicting the AUV's behavior requires a comprehensive understanding of these dynamic forces and their interplay. In our research, we have devised a linear data-driven dynamic model rooted in Koopman's theory. The cornerstone of leveraging Koopman theory lies in accurately estimating the Koopman operator. To achieve this, we employ the dynamic mode decomposition (DMD) method, which enables the generation of the Koopman operator. We have developed a Fractional Sliding Mode Control (FSMC) method to provide robustness and high tracking performance for AUV systems. The efficacy of the proposed controller has been verified through simulation results. 
    more » « less