skip to main content


This content will become publicly available on September 1, 2025

Title: Enhanced Koopman operator-based robust data-driven control for 3 degree of freedom autonomous underwater vehicles: A novel approach
Developing an accurate dynamic model for an Autonomous Underwater Vehicle (AUV) is challenging due to the diverse array of forces exerted on it in an underwater environment. These forces include hydrodynamic effects such as drag, buoyancy, and added mass. Consequently, achieving precision in predicting the AUV's behavior requires a comprehensive understanding of these dynamic forces and their interplay. In our research, we have devised a linear data-driven dynamic model rooted in Koopman's theory. The cornerstone of leveraging Koopman theory lies in accurately estimating the Koopman operator. To achieve this, we employ the dynamic mode decomposition (DMD) method, which enables the generation of the Koopman operator. We have developed a Fractional Sliding Mode Control (FSMC) method to provide robustness and high tracking performance for AUV systems. The efficacy of the proposed controller has been verified through simulation results.  more » « less
Award ID(s):
1828010
PAR ID:
10514496
Author(s) / Creator(s):
;
Publisher / Repository:
Pergamon
Date Published:
Journal Name:
Ocean Engineering
Volume:
307
Issue:
C
ISSN:
0029-8018
Page Range / eLocation ID:
118227
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Robotic manipulators with diverse structures find widespread use in both industrial and medical applications. Therefore, designing an appropriate controller is of utmost importance when utilizing such robots. In this research, we present a robust data-driven control method for the regulation of a 2-degree-of-freedom (2-DoF) robot manipulator. The nonlinear dynamic model of the 2-DoF robot arm is linearized using Koopman theory. The data mode decomposition (DMD) method is applied to generate the Koopman operator. A fractional sliding mode control (FOSMC) is employed to govern the data-driven linearized dynamic model. We compare the performance of Koopman fractional sliding mode control (KFOSMC) with conventional proportional integral derivative (PID) control and FOSMC prior to linearization by Koopman theory. The results demonstrate that KFOSMC outperforms PID and FOSMC in terms of high tracking performance, low tracking error, and minimal control signals.

     
    more » « less
  2. This research proposes a new fractional robust data-driven control method to control a nonlinear dynamic micro-electromechanical (MEMS) gyroscope model. The Koopman theory is used to linearize the nonlinear dynamic model of MEMS gyroscope, and the Koopman operator is obtained by using the dynamic mode decomposition (DMD) method. However, external disturbances constantly affect the MEMS gyroscope. To compensate for these perturbations, a fractional sliding mode controller (FOSMC) is applied. The FOSMC has several advantages, including high trajectory tracking performance and robustness. However, one of the drawbacks of FOSMC is generating high control inputs. To overcome this limitation, the researchers proposed a compound controller design that applies fractional proportional integral derivative (FOPID) to reduce the control efforts. The simulation results showed that the proposed compound Koopman-FOSMC and FOPID (Koopman-CFOPIDSMC) outperformed two other controllers, including FOSMC and Koopman-FOSMC, in terms of performance. Therefore, this research proposes an effective approach to control the nonlinear dynamic model of MEMS gyroscope. 
    more » « less
  3. A global modeling methodology based on Koopman operator theory for the dynamics of rigid bodies that make and break contact is presented. Traditionally, robotic systems that contact with their environment are represented as a system comprised of multiple dynamic equations that are switched depending on the contact state. This switching of governing dynamics has been a challenge in both task planning and control. Here, a Koopman lifting linearization approach is presented to subsume multiple dynamics such that no explicit switching is required for examining the dynamic behaviors across diverse contact states. First, it is shown that contact/noncontact transitions are continuous at a microscopic level. This allows for the application of Koopman operator theory to the class of robotic systems that repeat contact/non-contact transitions. Second, an effective method for finding Koopman operator observables for capturing rapid changes to contact forces is presented. The method is applied to the modeling of dynamic peg insertion where a peg collides against and bounces on the chamfer of the hole. Furthermore, the method is applied to the dynamic modeling of a sliding object subject to complex friction and damping properties. Segmented dynamic equations are unified with the Koopman modeling method. 
    more » « less
  4. A global modeling methodology based on Koopman operator theory for the dynamics of rigid bodies that make and break contact is presented. Traditionally, robotic systems that contact with their environment are represented as a system comprised of multiple dynamic equations that are switched depending on the contact state. This switching of governing dynamics has been a challenge in both task planning and control. Here, a Koopman lifting linearization approach is presented to subsume multiple dynamics such that no explicit switching is required for examining the dynamic behaviors across diverse contact states. First, it is shown that contact/noncontact transitions are continuous at a microscopic level. This allows for the application of Koopman operator theory to the class of robotic systems that repeat contact/non-contact transitions. Second, an effective method for finding Koopman operator observables for capturing rapid changes to contact forces is presented. The method is applied to the modeling of dynamic peg insertion where a peg collides against and bounces on the chamfer of the hole. Furthermore, the method is applied to the dynamic modeling of a sliding object subject to complex friction and damping properties. Segmented dynamic equations are unified with the Koopman modeling method. 
    more » « less
  5. The modeling of nonlinear dynamics based on Koopman operator theory, originally applicable only to autonomous systems with no control, is extended to nonautonomous control system without approximation of the input matrix. Prevailing methods using a least square estimate of the input matrix may result in an erroneous input matrix, misinforming the controller. Here, a new method for constructing a Koopman model that yields the exact input matrix is presented. A set of state variables are introduced so that the control inputs are linearly involved in the dynamics of actuators. With these variables, a lifted linear model with the exact input matrix, called a Control-Coherent Koopman Model, is constructed by superposing control input terms, which are linear in local actuator dynamics, to the Koopman operator of the associated autonomous nonlinear system. As an example, the proposed method is applied to multi degree-of-freedom robotic arms, which are controlled with Model Predictive Control (MPC). It is demonstrated that the prevailing Dynamic Mode Decomposition with Control (DMDc) using an approximate input matrix does not provide a satisfactory result, while the Control-Coherent Koopman Model performs well with the correct input matrix, even performing better than the bilinear formulation of the Koopman operator. 
    more » « less