skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effects of Mixing at Pore Intersections on Large‐Scale Dissolution Patterns and Solute Transport
Abstract The flow‐induced dissolution of porous rocks governs many important subsurface processes and applications. Solute mixing, which determines pore‐scale concentration fields, is a key process that affects dissolution. Despite its importance, the effects of pore‐scale mixing on large‐scale dissolution patterns have not been investigated. Here, we use a pore network model to elucidate the mixing effects on macroscopic dissolution patterns and solute transport. We consider two mixing rules at pore intersections that represent two end members in terms of the mixing intensity. We observe that the mixing effect on dissolution is the strongest at moderate Damköhler number, when the reactive and advective time scales are comparable. This is the regime where wormholes spontaneously appear. Incomplete mixing is shown to enhance flow focusing at the tips of the dissolution channels, which results in thinner wormholes and shorter breakthrough times. These effects on passive solute transport are evident independent of initial network heterogeneity.  more » « less
Award ID(s):
2046015
PAR ID:
10481865
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
50
Issue:
21
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Mineral dissolution releases ions into fluids and alters pore structures, affecting geochemistry and subsurface fluid flow. Thus, mineral dissolution plays a crucial role in many subsurface processes and applications. Pore‐scale fluid flow often controls mineral dissolution by controlling concentration gradients at fluid‐solid interfaces. In particular, recent studies have shown that fluid inertia can significantly affect reactive transport in porous and fractured media by inducing unique flow structures such as recirculating flows. However, the effects of pore‐scale flow and fluid inertia on mineral dissolution remain largely unknown. To address this knowledge gap, we combined visual laboratory experiments and micro‐continuum pore‐scale reactive transport modeling to investigate the effects of pore‐scale flow and fluid inertia on mineral dissolution dynamics. Through flow topology analysis, we identified unique patterns of 2D and 3D recirculating flows and their distinctive effects on dissolution. The simulation results revealed that 3D flow topology and fluid inertia dramatically alter the spatiotemporal dynamics of mineral dissolution. Furthermore, we found that the 3D flow topology fundamentally changes the upscaled relationship between porosity and reactive surface area compared to a conventional relationship, which is commonly used in continuum‐scale modeling. These findings highlight the critical role of 3D flow and fluid inertia in modeling mineral dissolution across scales, from the pore scale to the Darcy scale. 
    more » « less
  2. Abstract Rock dissolution is a common subsurface geochemical reaction affecting pore space properties, crucial for reservoir stimulation, carbon storage, and geothermal energy. Predictive models for dissolution remain limited due to incomplete understanding of the mechanisms involved. We examine the influence of flow, transport, and reaction regimes on mineral dissolution using 29 time‐resolved data from 3D rocks. We find that initial pore structure significantly influences the dissolution pattern, with reaction rates up to two orders of magnitude lower than batch conditions, given solute and fluid‐solid boundary constraints. Flow unevenness determines the location and rate of dissolution. We propose two models describing expected dissolution patterns and effective reaction rates based on dimensionless metrics for flow, transport, and reaction. Finally, we analyze feedback between evolving flow and pore structure to understand conditions that regulate/reinforce dissolution hotspots. Our findings underscore the major impact of flow arrangement on reaction‐front propagation and provide a foundation for controlling dissolution hotspots. 
    more » « less
  3. Abstract Spreading and mixing are complementary processes that promote reaction of two reactive aqueous solutes present in contiguous plumes in groundwater. Spreading reconfigures the plume geometry, elongating the interface between the plumes, while mixing increases the volume of aquifer occupied by each plume, bringing the solute molecules together to react. Since reaction only occurs where the two solute plumes are in contact with each other, local mechanisms that drive flow and transport near the interface between the plumes control the amount of reaction. This work uses local characteristics of the plumes and the flow field near the plume interface to analyze the relative contributions of pore‐scale mixing and mechanical dispersion to instantaneous, irreversible, bimolecular reaction in a homogeneous aquifer with active spreading caused by radial flow from a well. Two solutes are introduced in sequence at the well, creating concentric circular plumes. We allow for incomplete mixing of the solutes in the pore space, by modeling the pore space as a segregated compartment and a mixed compartment with first‐order mass transfer between the two compartments. We develop semi‐analytical expressions for concentrations of the solutes in both compartments. We found that the relative contribution of mechanical dispersion to reaction increases over time and also increases due to increases in the Peclet number, in the relative source concentration of the chasing solute, and in the mass transfer rate from the segregated compartment to the mixed compartment of the pore space. 
    more » « less
  4. Solute transport and biogeochemical reactions in porous and fractured media flows are controlled by mixing, as are subsurface engineering operations such as contaminant remediation, geothermal energy production, and carbon sequestration. Porous media flows are generally regarded as slow, so the effects of fluid inertia on mixing and reaction are typically ignored. Here, we demonstrate through microfluidic experiments and numerical simulations of mixing-induced reaction that inertial recirculating flows readily emerge in laminar porous media flows and dramatically alter mixing and reaction dynamics. An optimal Reynolds number that maximizes the reaction rate is observed for individual pore throats of different sizes. This reaction maximization is attributed to the effects of recirculation flows on reactant availability, mixing, and reaction completion, which depend on the topology of recirculation relative to the boundary of the reactants or mixing interface. Recirculation enhances mixing and reactant availability, but a further increase in flow velocity reduces the residence time in recirculation, leading to a decrease in reaction rate. The reaction maximization is also confirmed in a flow channel with grain inclusions and randomized porous media. Interestingly, the domain-wide reaction rate shows a dramatic increase with increasing Re in the randomized porous media case. This is because fluid inertia induces complex three-dimensional flows in randomized porous media, which significantly increases transverse spreading and mixing. This study shows how inertial flows control reaction dynamics at the pore scale and beyond, thus having major implications for a wide range of environmental systems. 
    more » « less
  5. Abstract Groundwater mixing dynamics play a crucial role in the biogeochemical cycling of shallow wetlands. In this paper, we conducted groundwater simulations to investigate the combined effects of evaporation and local heterogeneity on mixing dynamics in shallow wetland sediments. The results show that evaporation causes groundwater and solutes to upwell from deep sediments to the surface. As the solute reaches the surface, evaporation enhances the accumulation of the solute near the surface, resulting in a higher solute concentration than in deep sediments. Mapping of flow topology reveals that local heterogeneity generates spatially varied mixing patterns mainly along preferential flow pathways. The upwelling of groundwater induced by surface evaporation through heterogeneous sediments is likely to create distinct mixing hotspots that differ spatially from those generated by lateral preferential flows driven by large‐scale hydraulic gradients, which enhances the overall mixing in the subsurface. These findings have strong implications for biogeochemical processing in wetlands. 
    more » « less