skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Developmental transcriptomes predict adult social behaviours in the socially flexible sweat bee, Lasioglossum baleicum
Abstract Natural variation can provide important insights into the genetic and environmental factors that shape social behaviour and its evolution. The sweat bee,Lasioglossum baleicum, is a socially flexible bee capable of producing both solitary and eusocial nests. We demonstrate that within a single nesting aggregation, soil temperatures are a strong predictor of the social structure of nests. Sites with warmer temperatures in the spring have a higher frequency of social nests than cooler sites, perhaps because warmer temperatures provide a longer reproductive window for those nests. To identify the molecular correlates of this behavioural variation, we generated a de novo genome assembly forL. baleicum, and we used transcriptomic profiling to compare adults and developing offspring from eusocial and solitary nests. We find that adult, reproductive females have similar expression profiles regardless of social structure in the nest, but that there are strong differences between reproductive females and workers from social nests. We also find substantial differences in the transcriptomic profiles of stage‐matched pupae from warmer, social‐biased sites compared to cooler, solitary‐biased sites. These transcriptional differences are strongly predictive of adult reproductive state, suggesting that the developmental environment may set the stage for adult behaviours inL. baleicum. Together, our results help to characterize the molecular mechanisms shaping variation in social behaviour and highlight a potential role of environmental tuning during development as a factor shaping adult behaviour and physiology in this socially flexible bee.  more » « less
Award ID(s):
1754476
PAR ID:
10481886
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Ecology
Volume:
34
Issue:
15
ISSN:
0962-1083
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundEvolution has shaped diverse reproductive investment strategies, with some organisms integrating environmental cues into their reproductive decisions. In animal societies, social cues can further influence reproductive decisions in ways that might support the survival and success of the social group. Bumble bees are a lineage of eusocial insects wherein queens initiate nests independently. Bumble bee queens enter their eusocial phase only after successfully rearing their first offspring and thereafter exhibit an increased rate of egg-laying. We tested the idea that during bumble bee nest initiation, queen reproduction is socially context-dependent and under the control of social conditions in the nest. ResultsOur findings reveal that in the bumble beeBombus impatiens, queen egg-laying follows a dynamic, stereotypical pattern and is also heavily influenced by social group members. During the initial stages of nest initiation, accelerated egg-laying in queens is associated with the presence of workers or older larvae and pupae. Moreover, workers are required for queens to maintain increased levels of egg laying across the nest initiation stage. We also confirmed a previously-described pattern where queens temporarily decelerate egg-laying early in nest-founding, only to increase it again when the first adult workers are soon to emerge. This “pause” in egg-laying was observed in allB. impatiensqueens as well as in additional species examined. ConclusionsOur results support the idea that eusocial systems can employ socially context-dependent control of queen egg-laying as a reproductive strategy. In some solitary-founding lineages, including bumble bees, queens may reach their full reproductive potential only after the emergence of the first adult workers, who then take over brood care. This stands in contrast to the hyper-reproductivity observed in some eusocial species. The presence of workers and older brood (who will soon eclose) not only alleviates queen brood care responsibilities but may also provide signals that cause queens to increase their reproductive output. These phenomena may allow queens to adapt their reproductive output to the conditions of the colony. Broadly, these findings highlight the dynamic interplay between social conditions and reproduction in bumble bees. 
    more » « less
  2. null (Ed.)
    Bumble bee queens initiate nests solitarily and transition to living socially once they successfully rear their first cohort of offspring. Bumble bees are disproportionately important for early season pollination, and many populations are experiencing dramatic declines. In this system, the onset of the social stage is critical for nest survival, yet the mechanisms that facilitate this transition remain understudied. Further, the majority of conservation efforts target the social stage of the bumble bee life cycle and do not address the solitary founding stage. We experimentally manipulated the timing of worker emergence in young nests of bumble bee (Bombus impatiens) queens to determine whether and how queen fecundity and survival are impacted by the emergence of workers in the nest. We found that queens with workers added to the nest exhibit increased ovary activation, accelerated egg laying, elevated juvenile hormone (JH) titres and also lower mortality relative to solitary queens. We also show that JH is more strongly impacted by the social environment than associated with queen reproductive state, suggesting that this key regulator of insect reproduction has expanded its function in bumble bees to also influence social organization. We further demonstrate that these effects are independent of queen social history, suggesting that this underlying mechanism promoting queen fecundity is reversible and short lived. Synchronization between queen reproductive status and emergence of workers in the nest may ultimately increase the likelihood of early nesting success in social systems with solitary nest founding. Given that bumble bee workers regulate queen physiology as we have demonstrated, the timing of early worker emergence in the nest likely impacts queen fitness, colony developmental trajectories and ultimately nesting success. Collectively, our findings underline the importance of conservation interventions for bumble bees that support the early nesting period and facilitate the production and maintenance of workers in young nests 
    more » « less
  3. Comparative genomic studies of social insects suggest that changes in gene regulation are associated with evolutionary transitions in social behavior, but the activity of predicted regulatory regions has not been tested empirically. We used STARR-seq, a high-throughput enhancer discovery tool, to identify and measure the activity of enhancers in the socially variable sweat bee,Lasioglossum albipes. We identified over 36,000 enhancers in theL. albipesgenome from three social and three solitary populations. Many enhancers were identified in only a subset ofL. albipespopulations, revealing rapid divergence in regulatory regions within this species. Population-specific enhancers were often proximal to the same genes across populations, suggesting compensatory gains and losses of regulatory regions may preserve gene activity. We also identified 1182 enhancers with significant differences in activity between social and solitary populations, some of which are conserved regulatory regions across species of bees. These results indicate that social trait variation inL. albipesis driven both by the fine-tuning of ancient enhancers as well as lineage-specific regulatory changes. Combining enhancer activity with population genetic data revealed variants associated with differences in enhancer activity and identified a subset of differential enhancers with signatures of selection associated with social behavior. Together, these results provide the first empirical map of enhancers in a socially flexible bee and highlight links between cis-regulatory variation and the evolution of social behavior. 
    more » « less
  4. Season length and its associated variables can influence the expression of social behaviours, including the occurrence of eusociality in insects. Eusociality can vary widely across environmental gradients, both within and between different species. Numerous theoretical models have been developed to examine the life history traits that underlie the emergence and maintenance of eusociality, yet the impact of seasonality on this process is largely uncharacterized. Here, we present a theoretical model that incorporates season length and offspring development time into a single, individual-focused model to examine how these factors can shape the costs and benefits of social living. We find that longer season lengths and faster brood development times are sufficient to favour the emergence and maintenance of a social strategy, while shorter seasons favour a solitary one. We also identify a range of season lengths where social and solitary strategies can coexist. Moreover, our theoretical predictions are well matched to the natural history and behaviour of two flexibly eusocial bee species, suggesting that our model can make realistic predictions about the evolution of different social strategies. Broadly, this work reveals the crucial role that environmental conditions can have in shaping social behaviour and its evolution and it underscores the need for further models that explicitly incorporate such variation to study the evolutionary trajectories of eusociality. 
    more » « less
  5. Abstract The temperature of the nest influences fitness in cavity-nesting bees. Females may choose nest cavities that mitigate their offspring’s exposure to stressful temperatures. This study aims to understand how cavity temperature impacts the nesting preference of the solitary bee Megachile rotundata (Fabricius) under field conditions. We designed and 3D printed nest boxes that measured the temperatures of 432 cavities. Nest boxes were four-sided with cavity entrances facing northeast, northwest, southeast, and southwest. Nest boxes were placed along an alfalfa field in Fargo, ND and were observed daily for completed nests. Our study found that cavity temperature varied by direction the cavity faced and by the position of the cavity within the nest box. The southwest sides recorded the highest maximum temperatures while the northeast sides recorded the lowest maximum temperatures. Nesting females filled cavities on the north-facing sides faster than cavities on the south-facing sides. The bees preferred to nest in cavities with lower average temperatures during foraging hours, and cavities that faced to the north. The direction the cavity faced was associated with the number of offspring per nest. The southwest-facing cavities had fewer offspring than nests on the northeast side. Our study indicates that the nesting box acts as a microclimate, with temperature varying by position and direction of the cavity. Variation in cavity temperature affected where females chose to nest, but not their reproductive investment. 
    more » « less