SDR 2.0 Cotton File: Cumulative List of Variables in the Surveys of the SDR Database is a comprehensive data dictionary, in Microsoft Excel format. Its main purpose is to facilitate the overview of 88118 variables (i.e. variable names, values, and labels) available in the original (source) data files that we retrieved automatically for harmonization purposes in the SDR Project. Information in the Cotton File comes from 215 source data files that comprise ca. 3500 national surveys administered between 1966 and 2017 in 169 countries or territories, as part of 23 international survey projects. 
                        more » 
                        « less   
                    
                            
                            SDR2 Database
                        
                    
    
            The SDR Database v.2.0 (SDR2) is a multi-country, multi-year database for research on political participation, social capital, and well-being. It comprises harmonized information from 23 international survey projects, covering over 4.4 million respondents from 156 countries in the period 1966 – 2017. SDR2 provides both target variables and methodological indicators that store source survey and ex-post harmonization metadata. SDR2 consists of three datasets. The MASTER file, which stores harmonized information for a total of 4,402,489 respondents. The auxiliary PLUG-SURVEY file containing controls for source data quality and a set of technical variables needed for merging this file with the MASTER file. And the PLUG-COUNTRY file, which is a dictionary of countries and territories used in the MASTER file. An overall description of the SDR2 Database, and detailed information about its datasets are available in the SDR2 documentation. SDR2 is a product of the project Survey Data Recycling: New Analytic Framework, Integrated Database, and Tools for Cross-national Social, Behavioral and Economic Research, financed by the US National Science Foundation (PTE Federal award 1738502). We thank the Ohio State University and the Institute of Philosophy and Sociology, Polish Academy of Sciences, for organizational support. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1738502
- PAR ID:
- 10482060
- Publisher / Repository:
- Harvard Dataverse
- Date Published:
- Subject(s) / Keyword(s):
- ex-post harmonization of cross-national survey data, source data quality measures, harmonization process metadata, harmonized measures of political behaviors, political attitudes, social capital, well-being and socio-demographics
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Public opinion surveys constitute a widespread, powerful tool to study peoples’ attitudes and behaviors from comparative perspectives. However, even global surveys can have limited geographic and temporal coverage, which can hinder the production of comprehensive knowledge. To expand the scope of comparison, social scientists turn to ex-post harmonization of variables from datasets that cover similar topics but in different populations and/or at different times. These harmonized datasets can be analyzed as a single source and accessed through various data portals. However, the Survey Data Recycling (SDR) research project has identified three challenges faced by social scientists when using data portals: the lack of capability to explore data in-depth or query data based on customized needs, the difficulty in efficiently identifying related data for studies, and the incapability to evaluate theoretical models using sliced data. To address these issues, the SDR research project has developed the SDR Querier, which is applied to the harmonized SDR database. The SDR Querier includes a BERT-based model that allows for customized data queries through research questions or keywords (Query-by-Question), a visual design that helps users determine the availability of harmonized data for a given research question (Query-by-Condition), and the ability to reveal the underlying relational patterns among substantive and methodological variables in the database (Query-by-Relation), aiding in the rigorous evaluation or improvement of regression models. Case studies with multiple social scientists have demonstrated the usefulness and effectiveness of the SDR Querier in addressing daily challenges.more » « less
- 
            The historical settlement data compilation for Spain (HISDAC-ES) is a geospatial dataset consisting of over 240 gridded surfaces measuring the physical, functional, age-related, and evolutionary characteristics of the Spanish building stock. We scraped, harmonized, and aggregated cadastral building footprint data for Spain, covering over 12,000,000 building footprints including construction year attributes, to create a multi-faceted series of gridded surfaces (GeoTIFF format), describing the evolution of human settlements in Spain from 1900 to 2020, at 100m spatial and 5 years temporal resolution. Also, the dataset contains aggregated characteristics and completeness statistics at the municipality level, in CSV and GeoPackage format.!!! UPDATE 08-2023 !!!: We provide a new, improved version of HISDAC-ES. Specifically, we fixed two bugs in the production code that caused an incorrect rasterization of the multitemporal BUFA layers and of the PHYS layers (BUFA, BIA, DWEL, BUNITS sum and mean). Moreover, we added decadal raster datasets measuring residential building footprint and building indoor area (1900-2020), and provide a country-wide, harmonized building footprint centroid dataset in GeoPackage vector data format.File descriptions:Datasets are available in three spatial reference systems:HISDAC-ES_All_LAEA.zip: Raster data in Lambert Azimuthal Equal Area (LAEA) covering all Spanish territory.HISDAC-ES_IbericPeninsula_UTM30.zip: Raster data in UTM Zone 30N covering all the Iberic Peninsula + Céuta and Melilla.HISDAC-ES_CanaryIslands_REGCAN.zip: Raster data in REGCAN-95, covering the Canary Islands only.HISDAC-ES_MunicipAggregates.zip: Municipality-level aggregates and completeness statistics (CSV, GeoPackage), in LAEA projection.ES_building_centroids_merged_spatjoin.gpkg: 7,000,000+ building footprint centroids in GeoPackage format, harmonized from the different cadastral systems, representing the input data for HISDAC-ES. These data can be used for sanity checks or for the creation of further, user-defined gridded surfaces.Source data:HISDAC-ES is derived from cadastral building footprint data, available from different authorities in Spain:Araba province: https://geo.araba.eus/WFS_Katastroa?SERVICE=WFS&VERSION=1.1.0&REQUEST=GetCapabilitiesBizkaia province: https://web.bizkaia.eus/es/inspirebizkaiaGipuzkoa province: https://b5m.gipuzkoa.eus/web5000/es/utilidades/inspire/edificios/Navarra region: https://inspire.navarra.es/services/BU/wfsOther regions: http://www.catastro.minhap.es/INSPIRE/buildings/ES.SDGC.bu.atom.xmlData source of municipality polygons: Centro Nacional de Información Geográfica (https://centrodedescargas.cnig.es/CentroDescargas/index.jsp)Technical notes:Gridded dataFile nomenclature:./region_projection_theme/hisdac_es_theme_variable_version_resolution[m][_year].tifRegions:all: complete territory of Spaincan: Canarian Islands onlyibe: Iberic peninsula + Céuta + MelillaProjections:laea: Lambert azimuthal equal area (EPSG:3035)regcan: REGCAN95 / UTM zone 28N (EPSG:4083)utm: ETRS89 / UTM zone 30N (EPSG:25830)Themes:evolution / evol: multi-temporal physical measurementslanduse: multi-temporal building counts per land use (i.e., building function) classphysical / phys: physical building characteristics in 2020temporal / temp: temporal characteristics (construction year statistics)Variables: evolutionbudens: building density (count per grid cell area)bufa: building footprint areadeva: developed area (any grid cell containing at least one building)resbufa: residential building footprint arearesbia: residential building indoor areaVariables: physicalbia: building indoor areabufa: building footprint areabunits: number of building unitsdwel: number of dwellingsVariables: temporalmincoy: minimum construction year per grid cellmaxcoy: minimum construction year per grid cellmeancoy: mean construction year per grid cellmedcoy: median construction year per grid cellmodecoy: mode (most frequent) construction year per grid cellvarcoy: variety of construction years per grid cellVariable: landuseCounts of buildings per grid cell and land use type.Municipality-level datahisdac_es_municipality_stats_multitemporal_longform_v1.csv: This CSV file contains the zonal sums of the gridded surfaces (e.g., number of buildings per year and municipality) in long form. Note that a value of 0 for the year attribute denotes the statistics for records without construction year information.hisdac_es_municipality_stats_multitemporal_wideform_v1.csv: This CSV file contains the zonal sums of the gridded surfaces (e.g., number of buildings per year and municipality) in wide form. Note that a value of 0 for the year suffix denotes the statistics for records without construction year information.hisdac_es_municipality_stats_completeness_v1.csv: This CSV file contains the missingness rates (in %) of the building attribute per municipality, ranging from 0.0 (attribute exists for all buildings) to 100.0 (attribute exists for none of the buildings) in a given municipality.Column names for the completeness statistics tables:NATCODE: National municipality identifier*num_total: number of buildings per municperc_bymiss: Percentage of buildings with missing built year (construction year)perc_lumiss: Percentage of buildings with missing landuse attributeperc_luother: Percentage of buildings with landuse type "other"perc_num_floors_miss: Percentage of buildings without valid number of floors attributeperc_num_dwel_miss: Percentage of buildings without valid number of dwellings attributeperc_num_bunits_miss: Percentage of buildings without valid number of building units attributeperc_offi_area_miss: Percentage of buildings without valid official area (building indoor area, BIA) attributeperc_num_dwel_and_num_bunits_miss: Percentage of buildings missing both number of dwellings and number of building units attributeThe same statistics are available as geopackage file including municipality polygons in Lambert azimuthal equal area (EPSG:3035).*From the NATCODE, other regional identifiers can be derived as follows:NATCODE: 34 01 04 04001Country: 34Comunidad autónoma (CA_CODE): 01Province (PROV_CODE): 04LAU code: 04001 (province + municipality code)more » « less
- 
            A common claim about the affluent democracies is that protest is trending, becoming more legitimate and widely used by all political contenders. In the new democracies, protest is seen as having contributed to democratization, but growing apathy has led to protest decline while in authoritarian regimes protest may be spurring more democratization. Assessing these ideas requires comparative trend data covering 15 or more years but constructing such data confronts problems. The major problem is that the most available survey item asks “have you ever joined (lawful) demonstrations,” making it difficult to time when this protest behavior occurred. We advance a novel method for timing these “ever” responses by focusing on young adults (aged 18-23 years), who are likely reporting on participation within the past 5 years. Drawing on the Survey Data Recycling harmonized data set, we use a multilevel model including harmonization and survey quality controls to create predicted probabilities for young adult participation (576 surveys, 119 countries, 1966-2010). Aggregating these to create country-year rate estimates, these compare favorably with overlapping estimates from surveys asking about “the past 5 years or so” and event data from the PolDem project. Harmonization and survey quality controls improve these predicted values. These data provide 15+ years trend estimates for 60 countries, which we use to illustrate the possibilities of estimating comparative protest trends.more » « less
- 
            COVID-19 variants continue to create public health danger impacting mortality and morbidity across the United States. The spillover effects of COVID-19 on the economy and social institutions pose a significant threat to broader wellbeing, including the food security of millions across the country. We aim to explore whether the context of place matters above and beyond individual and social vulnerabilities for food insecurity. To do so, we employ a multi-level framework using data from a survey of over 10,000 U.S. adults from March 2020 with American Community Survey (ACS) and John Hopkins COVID Dashboard county-level data. We find nearly two in five respondents were food insecure by March of 2020 with disparities across race, nativity, the presence of children in the home, unemployment, and age. Furthermore, we note that individuals living in more disadvantaged communities were more likely to report food insecurity above and beyond individual and social vulnerabilities. Overall, food insecurity is driven by complex, multi-level dynamics that remain a pressing public health concern for the current—but also future—public health crisis.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
