skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Genetic mapping of dynamic control of leaf angle across multiple canopy levels in maize
Abstract Optimizing leaf angle and other canopy architecture traits has helped modern maize (Zea maysL.) become adapted to higher planting densities over the last 60 years. Traditional investigations into genetic control of leaf angle have focused on one leaf or the average of multiple leaves; as a result, our understanding of genetic control across multiple canopy levels is still limited. To address this, genetic mapping across four canopy levels was conducted in the present study to investigate the genetic control of leaf angle across the canopy. We developed two populations of doubled haploid lines derived from three inbreds with distinct leaf angle phenotypes. These populations were genotyped with genotyping‐by‐sequencing and phenotyped for leaf angle at four different canopy levels over multiple years. To understand how leaf angle changes across the canopy, the four measurements were used to derive three additional traits. Composite interval mapping was conducted with the leaf‐specific measurements and the derived traits. A set of 59 quantitative trait loci (QTLs) were uncovered for seven traits, and two genomic regions were consistently detected across multiple canopy levels. Additionally, seven genomic regions were found to contain consistent QTLs with either relatively stable or dynamic effects at different canopy levels. Prioritizing the selection of QTLs with dynamic effects across the canopy will aid breeders in selecting maize hybrids with the ideal canopy architecture that continues to maximize yield on a per area basis under increasing planting densities.  more » « less
Award ID(s):
2210259
PAR ID:
10482094
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
The Plant Genome
Volume:
17
Issue:
1
ISSN:
1940-3372
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Plant architecture is a major determinant of planting density, which enhances productivity potential for crops per unit area. Genomic prediction is well positioned to expedite genetic gain of plant architectural traits since they are typically highly heritable. Additionally, the adaptation of genomic prediction models to query predictive abilities of markers tagging certain genomic regions could shed light on the genetic architecture of these traits. Here, we leveraged transcriptional networks from a prior study that contextually described developmental progression during tassel and leaf organogenesis in maize (Zea mays) to inform genomic prediction models for architectural traits. Since these developmental processes underlie tassel branching and leaf angle, 2 important agronomic architectural traits, we tested whether genes prioritized from these networks quantitatively contribute to the genetic architecture of these traits. We used genomic prediction models to evaluate the ability of markers in the vicinity of prioritized network genes to predict breeding values of tassel branching and leaf angle traits for 2 diversity panels in maize and diversity panels from sorghum (Sorghum bicolor) and rice (Oryza sativa). Predictive abilities of markers near these prioritized network genes were similar to those using whole-genome marker sets. Notably, markers near highly connected transcription factors from core network motifs in maize yielded predictive abilities that were significantly greater than expected by chance in not only maize but also closely related sorghum. We expect that these highly connected regulators are key drivers of architectural variation that are conserved across closely related cereal crop species. 
    more » « less
  2. McIntyre, L (Ed.)
    Abstract Foliar diseases of maize are among the most important diseases of maize worldwide. This study focused on 4 major foliar diseases of maize: Goss's wilt, gray leaf spot, northern corn leaf blight, and southern corn leaf blight. QTL mapping for resistance to Goss’s wilt was conducted in 4 disease resistance introgression line populations with Oh7B as the common recurrent parent and Ki3, NC262, NC304, and NC344 as recurrent donor parents. Mapping results for Goss’s wilt resistance were combined with previous studies for gray leaf spot, northern corn leaf blight, and southern corn leaf blight resistance in the same 4 populations. We conducted (1) individual linkage mapping analysis to identify QTL specific to each disease and population; (2) Mahalanobis distance analysis to identify putative multiple disease resistance regions for each population; and 3) joint linkage mapping to identify QTL across the 4 populations for each disease. We identified 3 lines that were resistant to all 4 diseases. We mapped 13 Goss’s wilt QTLs in the individual populations and an additional 6 using joint linkage mapping. All Goss’s wilt QTL had small effects, confirming that resistance to Goss’s wilt is highly quantitative. We report several potentially important chromosomal bins associated with multiple disease resistance including 1.02, 1.03, 3.04, 4.06, 4.08, and 9.03. Together, these findings indicate that disease QTL distribution is not random and that there are locations in the genome that confer resistance to multiple diseases. Furthermore, resistance to bacterial and fungal diseases is not entirely distinct, and we identified lines resistant to both fungi and bacteria, as well as loci that confer resistance to both bacterial and fungal diseases. 
    more » « less
  3. Abstract An early event in plant organogenesis is establishment of a boundary between the stem cell containing meristem and differentiating lateral organ. In maize (Zea mays), evidence suggests a common gene network functions at boundaries of distinct organs and contributes to pleiotropy between leaf angle and tassel branch number, two agronomic traits. To uncover regulatory variation at the nexus of these two traits, we use regulatory network topologies derived from specific developmental contexts to guide multivariate genome-wide association analyses. In addition to defining network plasticity around core pleiotropic loci, we identify new transcription factors that contribute to phenotypic variation in canopy architecture, and structural variation that contributes tocis-regulatory control of pleiotropy between tassel branching and leaf angle across maize diversity. Results demonstrate the power of informing statistical genetics with context-specific developmental networks to pinpoint pleiotropic loci and theircis-regulatory components, which can be used to fine-tune plant architecture for crop improvement. 
    more » « less
  4. Differences in canopy architecture play a role in determining both the light and water use efficiency. Canopy architecture is determined by several component traits, including leaf length, width, number, angle, and phyllotaxy. Phyllotaxy may be among the most difficult of the leaf canopy traits to measure accurately across large numbers of individual plants. As a result, in simulations of the leaf canopies of grain crops such as maize and sorghum, this trait is frequently approximated as alternating 180 angles between sequential leaves. We explore the feasibility of extracting direct measurements of the phyllotaxy of sequential leaves from 3D reconstructions of individual sorghum plants generated from 2D calibrated images and test the assumption of consistently alternating phyllotaxy across a diverse set of sorghum genotypes. Using a voxel-carving-based approach, we generate 3D reconstructions from multiple calibrated 2D images of 366 sorghum plants representing 236 sorghum genotypes from the sorghum association panel. The correlation between automated and manual measurements of phyllotaxy is only modestly lower than the correlation between manual measurements of phyllotaxy generated by two different individuals. Automated phyllotaxy measurements exhibited a repeatability of R2 ¼ 0.41 across imaging timepoints separated by a period of two days. A resampling based genome wide association study (GWAS) identified several putative genetic associations with lower-canopy phyllotaxy in sorghum. This study demonstrates the potential of 3D reconstruction to enable both quantitative genetic investigation and breeding for phyllotaxy in sorghum and other grain crops with similar lant architectures. 
    more » « less
  5. Bacterial leaf streak (BLS) of maize is an emerging foliar disease of maize in the Americas. It is caused by the gram-negative nonvascular bacterium Xanthomonas vasicola pv. vasculorum. There are no chemical controls available for BLS, and thus, host resistance is crucial for managing X. vasicola pv. vasculorum. The objective of this study was to examine the genetic determinants of resistance to X. vasicola pv. vasculorum in maize, as well as the relationship between other defense-related traits and BLS resistance. Specifically, we examined the correlations among BLS severity, severity for three fungal diseases, flg-22 response, hypersensitive response, and auricle color. We conducted quantitative trait locus (QTL) mapping for X. vasicola pv. vasculorum resistance using the maize recombinant inbred line population Z003 (B73 × CML228). We detected three QTLs for BLS resistance. In addition to the disease resistance QTL, we detected a single QTL for auricle color. We observed significant, yet weak, correlations among BLS severity, levels of pattern-triggered immunity response and leaf flecking. These results will be useful for understanding resistance to X. vasicola pv. vasculorum and mitigating the impact of BLS on maize yields. 
    more » « less