skip to main content


This content will become publicly available on October 13, 2024

Title: Motor Signals Mediate Stationarity Perception
Abstract

Head movement relative to the stationary environment gives rise to congruent vestibular and visual optic-flow signals. The resulting perception of a stationary visual environment, referred to herein as stationarity perception, depends on mechanisms that compare visual and vestibular signals to evaluate their congruence. Here we investigate the functioning of these mechanisms and their dependence on fixation behavior as well as on the activeversuspassive nature of the head movement. Stationarity perception was measured by modifying the gain on visual motion relative to head movement on individual trials and asking subjects to report whether the gain was too low or too high. Fitting a psychometric function to the data yields two key parameters of performance. The mean is a measure of accuracy, and the standard deviation is a measure of precision. Experiments were conducted using a head-mounted display with fixation behavior monitored by an embedded eye tracker. During active conditions, subjects rotated their heads in yaw ∼15 deg/s over ∼1 s. Each subject’s movements were recorded and played backviarotating chair during the passive condition. During head-fixed and scene-fixed fixation the fixation target moved with the head or scene, respectively. Both precision and accuracy were better during active than passive head movement, likely due to increased precision on the head movement estimate arising from motor prediction and neck proprioception. Performance was also better during scene-fixed than head-fixed fixation, perhaps due to decreased velocity of retinal image motion and increased precision on the retinal image motion estimate. These results reveal how the nature of head and eye movements mediate encoding, processing, and comparison of relevant sensory and motor signals.

 
more » « less
Award ID(s):
1911041
NSF-PAR ID:
10482175
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Brill
Date Published:
Journal Name:
Multisensory Research
Volume:
36
Issue:
7
ISSN:
2213-4794
Page Range / eLocation ID:
703 to 724
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Stationarity perception refers to the ability to accurately perceive the surrounding visual environment as world-fixed during self-motion. Perception of stationarity depends on mechanisms that evaluate the congruence between retinal/oculomotor signals and head movement signals. In a series of psychophysical experiments, we systematically varied the congruence between retinal/oculomotor and head movement signals to find the range of visual gains that is compatible with perception of a stationary environment. On each trial, human subjects wearing a head-mounted display execute a yaw head movement and report whether the visual gain was perceived to be too slow or fast. A psychometric fit to the data across trials reveals the visual gain most compatible with stationarity (a measure of accuracy) and the sensitivity to visual gain manipulation (a measure of precision). Across experiments, we varied 1) the spatial frequency of the visual stimulus, 2) the retinal location of the visual stimulus (central vs. peripheral), and 3) fixation behavior (scene-fixed vs. head-fixed). Stationarity perception is most precise and accurate during scene-fixed fixation. Effects of spatial frequency and retinal stimulus location become evident during head-fixed fixation, when retinal image motion is increased. Virtual Reality sickness assessed using the Simulator Sickness Questionnaire covaries with perceptual performance. Decreased accuracy is associated with an increase in the nausea subscore, while decreased precision is associated with an increase in the oculomotor and disorientation subscores. 
    more » « less
  2. Objective: To determine if a vestibular prosthesis could improve function in subjects with severe vestibular damage and could be used it as a scientific tool to investigate central vestibular processing. Background: Damage to the vestibular labyrinth is common and usually permanent. We therefore developed and tested a vestibular implant (VI) that is designed to mimic the information normally provided by the vestibular labyrinth to determine if we can reduce vestibular-mediated deficits and study temporal integration of sensory cues in the brain. Design/Methods: Monkeys had electrodes implanted in the semicircular canals of one ear and then severe bilateral vestibular damage was induced with aminoglycosides. Eye movements, perception, and balance were tested before and after vestibular damage and with the VI activated, which supplied head motion information to the brain via electrical stimulation delivered by the implanted electrodes. Humans also had electrode implantation (done in conjunction with a cochlear implant, CI) and they were tested on a temporal binding psychophysical task Results: Stimulation provided by VI in vestibulopathic monkeys improved their balance, perception of spatial orientation, and eye movement responses. Timing experiments in humans using CI and VI stimuli showed that unlike past experiments that used motion to generate the vestibular signal, CI and VI signals were received by the cerebral cortex with the same latency and were perceived as simultaneous, but this timing perception was highly sensitive to adaption. Conclusions: VI improves oculomotor, postural, and perceptual behavior in vestibulopathic monkeys and could prove to be an effective way to improve these functions in patients with permanent labyrinthine damage. Timing experiments show that when novel stimuli are used, the brain synthesizes them in accordance with their arrival at the cortex, but that experience can rapidly recalibrate this timing relationship, which may be why normal stimuli that are experienced habitually lack this characteristic. 
    more » « less
  3. Scientists have pondered the perceptual effects of ocular motion, and those of its counterpart, ocular stillness, for over 200 years. The unremitting ‘trembling of the eye’ that occurs even during gaze fixation was first noted by Jurin in 1738. In 1794, Erasmus Darwin documented that gaze fixation produces perceptual fading, a phenomenon rediscovered in 1804 by Ignaz Paul Vital Troxler. Studies in the twentieth century established that Jurin's ‘eye trembling’ consisted of three main types of ‘fixational’ eye movements, now called microsaccades (or fixational saccades), drifts and tremor. Yet, owing to the constant and minute nature of these motions, the study of their perceptual and physiological consequences has met significant technological challenges. Studies starting in the 1950s and continuing in the present have attempted to study vision during retinal stabilization—a technique that consists on shifting any and all visual stimuli presented to the eye in such a way as to nullify all concurrent eye movements—providing a tantalizing glimpse of vision in the absence of change. No research to date has achieved perfect retinal stabilization, however, and so other work has devised substitute ways to counteract eye motion, such as by studying the perception of afterimages or of the entoptic images formed by retinal vessels, which are completely stable with respect to the eye. Yet other research has taken the alternative tack to control eye motion by behavioural instruction to fix one's gaze or to keep one's gaze still, during concurrent physiological and/or psychophysical measurements. Here, we review the existing data—from historical and contemporary studies that have aimed to nullify or minimize eye motion—on the perceptual and physiological consequences of perfect versus imperfect fixation. We also discuss the accuracy, quality and stability of ocular fixation, and the bottom–up and top–down influences that affect fixation behaviour. This article is part of the themed issue ‘Movement suppression: brain mechanisms for stopping and stillness’. 
    more » « less
  4. Abstract Introduction

    An essential complement to molecular‐genetic approaches for analyzing the function of the oculomotor circuitry in mice is an understanding of sensory and motor signal processing in the circuit. Although there has been extensive analysis of the signals carried by neurons in the oculomotor circuits of species, such as monkeys, rabbits and goldfish, relatively little in vivo physiology has been done in the oculomotor circuitry of mice. We analyzed the contribution of vestibular and nonvestibular signals to the responses of individual Purkinje cells in the cerebellar flocculus of mice.

    Methods

    We recorded Purkinje cells in the cerebellar flocculus of C57BL/6 mice during eye movement responses to vestibular and visual stimulation.

    Results

    As in other species, most individual Purkinje cells in mice carried both vestibular and nonvestibular signals, and the most common response across cells was an increase in firing in response to ipsiversive eye movement or ipsiversive head movement. When both the head and eyes were moving, the Purkinje cell responses were approximated as a linear summation of head and eye velocity inputs. Unlike other species, floccular Purkinje cells in mice were considerably more sensitive to eye velocity than head velocity.

    Conclusions

    The signal content of Purkinje cells in the cerebellar flocculus of mice was qualitatively similar to that in other species. However, the eye velocity sensitivity was higher than in other species, which may reflect a tuning to the smaller range of eye velocities in mice.

     
    more » « less
  5. Abstract

    Previous work has demonstrated similarities and differences between aerial and terrestrial image viewing. Aerial scene categorization, a pivotal visual processing task for gathering geoinformation, heavily depends on rotation-invariant information. Aerial image-centered research has revealed effects of low-level features on performance of various aerial image interpretation tasks. However, there are fewer studies of viewing behavior for aerial scene categorization and of higher-level factors that might influence that categorization. In this paper, experienced subjects’ eye movements were recorded while they were asked to categorize aerial scenes. A typical viewing center bias was observed. Eye movement patterns varied among categories. We explored the relationship of nine image statistics to observers’ eye movements. Results showed that if the images were less homogeneous, and/or if they contained fewer or no salient diagnostic objects, viewing behavior became more exploratory. Higher- and object-level image statistics were predictive at both the image and scene category levels. Scanpaths were generally organized and small differences in scanpath randomness could be roughly captured by critical object saliency. Participants tended to fixate on critical objects. Image statistics included in this study showed rotational invariance. The results supported our hypothesis that the availability of diagnostic objects strongly influences eye movements in this task. In addition, this study provides supporting evidence for Loschky et al.’s (Journal of Vision, 15(6), 11, 2015) speculation that aerial scenes are categorized on the basis of image parts and individual objects. The findings were discussed in relation to theories of scene perception and their implications for automation development.

     
    more » « less