Self-efficacy, or the belief in one's ability to accomplish a task or achieve a goal, can significantly influence the effectiveness of various instructional methods to induce learning gains. The importance of self-efficacy is particularly pronounced in complex subjects like Computer Science, where students with high self-efficacy are more likely to feel confident in their ability to learn and succeed. Conversely, those with low self-efficacy may become discouraged and consider abandoning the field. The work presented here examines the relationship between self-efficacy and students learning computer programming concepts. For this purpose, we conducted a randomized control trial experiment with university-level students who were randomly assigned into two groups: a control group where participants read Java programs accompanied by explanatory texts (a passive strategy) and an experimental group where participants self-explain while interacting through dialogue with an intelligent tutoring system (an interactive strategy). We report here the findings of this experiment with a focus on self-efficacy, its relation to student learning gains (to evaluate the effectiveness, we measure pre/post-test), and other important factors such as prior knowledge or experimental condition/instructional strategies as well as interaction effects
more »
« less
When is reading more effective than tutoring? An analysis through the lens of students' self-efficacy among novices in computer science.
Self-efficacy, or the belief in one's ability to accomplish a task or achieve a goal, can significantly influence the effectiveness of various instructional methods to induce learning gains. The importance of self-efficacy is particularly pronounced in complex subjects like Computer Science, where students with high self-efficacy are more likely to feel confident in their ability to learn and succeed. Conversely, those with low self-efficacy may become discouraged and consider abandoning the field. The work presented here examines the relationship between self-efficacy and students learning computer programming concepts. For this purpose, we conducted a randomized control trial experiment with university-level students who were randomly assigned into two groups: a control group where participants read Java programs accompanied by explanatory texts (a passive strategy) and an experimental group where participants self-explain while interacting through dialogue with an intelligent
more »
« less
- Award ID(s):
- 1822816
- PAR ID:
- 10482230
- Publisher / Repository:
- Proceedings of 7th Educational Data Mining in Computer Science Education (CSEDM) Workshop at LAK 2023
- Date Published:
- Journal Name:
- Proceedings of 7th Educational Data Mining in Computer Science Education (CSEDM) Workshop at LAK 2023
- Format(s):
- Medium: X
- Location:
- Arlington, TX
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper presents a comparison of two instructional strategies meant to help learners better comprehend code and learn programming concepts: reading code examples annotated with expert explanation (worked-out examples) versus scaffolded self-explanation of code examples using an automated system (Intelligent Tutoring System). A randomized controlled trial study was conducted with 90 university students who were assigned to either the control group (reading worked-out examples, a passive strategy) or the experimental group where participants were asked to self-explain and received help, if needed, in the form of questions from the tutoring system( scaffolded self-explanation, an interactive strategy). We found that students with low prior knowledge in the experimental condition had significantly higher learning gains than students with high prior knowledge. However, in the control condition, this distinction in learning outcomes based on prior knowledge was not observed. We also analyzed the effect of self-efficacy on learning gains and the nature of self-explanation. Low self-efficacy students learn almost twice as much in the interactive condition versus the passive condition although the difference was not significant probably because of low sample size. We also found that high self-efficacy students tend to provide more relational explanations whereas low self-efficacy students provide more multi-structural or line-by-line explanations.more » « less
-
This study aimed to compare the effects of immersive virtual reality (IVR) videos and 2D educational videos on cognitive (i.e. conceptual knowledge) and non-cognitive (i.e. self-efficacy) learning outcomes. Fifty-three students from an all-girls middle school learned about humans’ impact on the ocean through either IVR videos, using a virtual reality (VR) headset, or through 2D videos, using a computer monitor. Results replicate previous findings suggesting that conceptual knowledge gains between IVR and desktop learning experiences is not significant. Also, results show that participants who watched IVR videos reported higher self-efficacy scores and expressed higher feelings of presence than participants who watched the same videos using a computer monitor. Finally, further analyses revealed that the feeling of presence mediated both cognitive and non-cognitive learning outcomes.more » « less
-
Teacher self-efficacy (SE) has been observed to be an 'important construct for Computer Science (CS) teachers' professional development because it can predict both teaching behaviors as well as student outcomes" [1]. The purpose of the present study was to investigate teacher CS SE during a two-year federally funded professional development (PD) and curriculum development project for middle school teachers incorporating game-design and the Unity development platform. The research question investigated is: How does teacher self-efficacy for teaching computer science via game design with the Unity game development platform change during a year-long PD program? Investigations of teacher SE for teaching CS have resulted in some surprising results. For example, it has been reported that - There were no differences in self-efficacy based on teachers' overall level of experience, despite previous findings that teacher self-efficacy is related to amount of experience" and "no differences in self-efficacy related to the teachers' own level of experience with CS" [2], thus further study of CS teacher SE is warranted. Participants in this study were six middle school teachers from four middle schools in the southeastern United States. They participated in a year-long PD program learning the Unity game development platform, elements of game design, and foundations of learner motivation. Guided reflective journaling was used to track the teachers' SE during the first year of the project. Teachers completed journal prompts at four intervals. Prompts consisted of questions like "How do you currently feel about your ability to facilitate student learning with Unity?" and "Are you confident that you can implement the materials the way the project team has planned for them to be implemented?" Prior to beginning the project participants expressed confidence in being able to facilitate student learning after participating in the planned professional development, but there was some uneasiness about learning and using Unity. From a SE perspective their responses make sense, as all of the participants are experienced teachers and should have confidence in their general ability to teach. However, since Unity is a new programming environment for all of the teachers, they did not have the prior experience necessary to have a high degree of confidence that they could successfully use it with their students.more » « less
-
Background and Context: Students’ self-efficacy toward computing affect their participation in related tasks and courses. Self- efficacy is likely influenced by students’ initial experiences and exposure to computer science (CS) activities. Moreover, student interest in a subject likely informs their ability to effectively regulate their learning in that domain. One way to enhance interest in CS is through using collaborative pair programming. Objective: We wanted to explore upper elementary students’ self- efficacy for and conceptual understanding of CS as manifest in collaborative and regulated discourse during pair programming. Method: We implemented a five-week CS intervention with 4th and 5th grade students and collected self-report data on students’ CS attitudes and conceptual understanding, as well as transcripts of dyads talking while problem solving on a pair programming task. Findings: The students’ self-report data, organized by dyad, fell into three categories based on the dyad’s CS self-efficacy and conceptual understanding scores. Findings from within- and cross-case analyses revealed a range of ways the dyads’ self-efficacy and CS conceptual understanding affected their collaborative and regulated discourse. Implications: Recommendations for practitioners and researchers are provided. We suggest that upper elementary students learn about productive disagreement and how to peer model. Additionally, our findings may help practitioners with varied ways to group their students.more » « less
An official website of the United States government

