Self-efficacy, or the belief in one's ability to accomplish a task or achieve a goal, can significantly influence the effectiveness of various instructional methods to induce learning gains. The importance of self-efficacy is particularly pronounced in complex subjects like Computer Science, where students with high self-efficacy are more likely to feel confident in their ability to learn and succeed. Conversely, those with low self-efficacy may become discouraged and consider abandoning the field. The work presented here examines the relationship between self-efficacy and students learning computer programming concepts. For this purpose, we conducted a randomized control trial experiment with university-level students who were randomly assigned into two groups: a control group where participants read Java programs accompanied by explanatory texts (a passive strategy) and an experimental group where participants self-explain while interacting through dialogue with an intelligent tutoring system (an interactive strategy). We report here the findings of this experiment with a focus on self-efficacy, its relation to student learning gains (to evaluate the effectiveness, we measure pre/post-test), and other important factors such as prior knowledge or experimental condition/instructional strategies as well as interaction effects
more »
« less
This content will become publicly available on April 8, 2025
Exploring The Effectiveness of Reading vs. Tutoring For Enhancing Code Comprehension For Novices
This paper presents a comparison of two instructional strategies meant to help learners better comprehend code and learn programming concepts: reading code examples annotated with expert explanation (worked-out examples) versus scaffolded self-explanation of code examples using an automated system (Intelligent Tutoring System). A randomized controlled trial study was conducted with 90 university students who were assigned to either the control group (reading worked-out examples, a passive strategy) or the experimental group where participants were asked to self-explain and received help, if needed, in the form of questions from the tutoring system( scaffolded self-explanation, an interactive strategy). We found that students with low prior knowledge in the experimental condition had significantly higher learning gains than students with high prior knowledge. However, in the control condition, this distinction in learning outcomes based on prior knowledge was not observed. We also analyzed the effect of self-efficacy on learning gains and the nature of self-explanation. Low self-efficacy students learn almost twice as much in the interactive condition versus the passive condition although the difference was not significant probably because of low sample size. We also found that high self-efficacy students tend to provide more relational explanations whereas low self-efficacy students provide more multi-structural or line-by-line explanations.
more »
« less
- PAR ID:
- 10518168
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- ACM Symposium on Applied Computing, SAC 2024
- ISBN:
- 9798400702433
- Page Range / eLocation ID:
- 38 to 47
- Subject(s) / Keyword(s):
- Intelligent Tutoring System Self-explanation Self-efficacy Code reading Code comprehension
- Format(s):
- Medium: X
- Location:
- Avila Spain
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Culbertson, J.; Perfors, A.; Rabagliati, H.; Ramenzoni, V. (Ed.)One pedagogical technique that promotes conceptual understanding in mathematics learners is self-explanation integrated with worked examples (e.g.,Rittle-Johnson et al., 2017). In this work, we implemented self-explanations with worked examples (correct and erroneous) in a software-based Intelligent Tutoring System (ITS) for learning algebra. We developed an approach to eliciting self-explanations in which the ITS guided students to select explanations that were conceptually rich in nature. Students who used the ITS with self-explanations scored higher on a posttest that included items tapping both conceptual and procedural knowledge than did students who used a version of the ITS that included only traditional problem-solving practice. This study replicates previous findings that self-explanation and worked examples in an ITS can foster algebra learning (Booth et al., 2013). Further, this study extends prior work to show that guiding students towards conceptual explanations is beneficial.more » « less
-
Culbertson, J.; Perfors, A.; Rabagliati, H.; Ramenzoni, V. (Ed.)One pedagogical technique that promotes conceptual understanding in mathematics learners is self-explanation integrated with worked examples (e.g., Rittle-Johnson et al., 2017). In this work, we implemented self-explanations with worked examples (correct and erroneous) in a software-based Intelligent Tutoring System (ITS) for learning algebra. We developed an approach to eliciting self-explanations in which the ITS guided students to select explanations that were conceptually rich in nature. Students who used the ITS with self-explanations scored higher on a posttest that included items tapping both conceptual and procedural knowledge than did students who used a version of the ITS that included only traditional problem-solving practice. This study replicates previous findings that self-explanation and worked examples in an ITS can foster algebra learning (Booth et al., 2013). Further, this study extends prior work to show that guiding students towards conceptual explanations is beneficial.more » « less
-
null (Ed.)We present in this paper the results of a randomized control trial experiment that compared the effectiveness of two instructional strategies that scaffold learners' code comprehension processes: eliciting Free Self-Explanation and a Socratic Method. Code comprehension, i.e., understanding source code, is a critical skill for both learners and professionals. Improving learners' code comprehension skills should result in improved learning which in turn should help with retention in intro-to-programming courses which are notorious for suffering from very high attrition rates due to the complexity of programming topics. To this end, the reported experiment is meant to explore the effectiveness of various strategies to elicit self-explanation as a way to improve comprehension and learning during complex code comprehension and learning activities in intro-to-programming courses. The experiment showed pre-/post-test learning gains of 30% (M = 0.30, SD = 0.47) for the Free Self-Explanation condition and learning gains of 59% (M = 0.59,SD = 0.39) for the Socratic method. Furthermore, we investigated the behavior of the two strategies as a function of students' prior knowledge which was measured using learners' pretest score. For the Free Self-Explanation condition, there was no significant difference in mean learning gains for low vs. high knowledge students. The magnitude of the difference in performance (mean difference= 0.02,95% CI: -0.34 to 0.39) was very small (eta squared = 0.006). Likewise, the Socratic method showed no significant difference in mean learning gains between low vs. high performing students. The magnitude of the performance difference (mean difference =-0.24,95% CI: -0.534 to 0.03) was large (eta squared = 0.10). These findings suggest that eliciting self-explanations can be used as an effective strategy and that guided self-explanations as in the Socratic method condition is more effective at inducing learning gains.more » « less
-
This paper reports the findings of an empirical study on the effects and nature of self explanation during source code comprehension learning activities in the context of learning computer programming language Java. Our study shows that self explanation helps learning and there is a strong positive correlation between the volume of self-explanation students produce and how much they learn. Furthermore, selfexplanations as an instructional strategy has no discrepancy based on student’s prior knowledge. We found that participants explain target code examples using a combination of language, code references, and mathematical expressions. This is not surprising given the nature of the target item, a computer program, but this indicates that automatically evaluating such self-explanations may require novel techniques compared to self-explanations of narrative or scientific texts.more » « less