skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fluid Ferroelectric Filaments
Abstract Freestanding slender fluid filaments of room‐temperature ferroelectric nematic liquid crystals are described. They are stabilized either by internal electric fields of bound charges formed due to polarization splay or by external voltage applied between suspending wires. The phenomenon is similar to those observed in dielectric fluids, such as deionized water, except that in ferroelectric nematic materials the voltages required are three orders of magnitudes smaller and the aspect ratio is much higher. The observed ferroelectric fluid threads are not only unique and novel but also offer measurements of basic physical quantities, such as the ferroelectric polarization and viscosity. Ferroelectric nematic fluid threads may have practical applications in nano‐fluidic micron‐size logic devices, switches, and relays.  more » « less
Award ID(s):
2210083
PAR ID:
10482283
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Science
Volume:
11
Issue:
9
ISSN:
2198-3844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Studies of sessile droplets and fluid bridges of a ferroelectric nematic liquid crystal in externally applied electric fields are presented. It is found that above a threshold, the interface of the fluid with air undergoes a fingering instability or ramification, resembling to Rayleigh-type instability observed in charged droplets in electric fields or circular drop-type instabilities observed in ferromagnetic liquids in magnetic field. The frequency dependence of the threshold voltage was determined in various geometries. The nematic director and ferroelectric polarization direction was found to point along the tip of the fingers that appear to repel each other, indicating that the ferroelectric polarization is essentially parallel to the director. The results are interpreted in connection to the Rayleigh and circular drop-type instabilities. 
    more » « less
  2. The domain structure of a fluid ferroelectric nematic is dramatically different from the domain structure of solid ferroelectrics since it is not restricted by rectilinear crystallographic axes and planar surface facets. We demonstrate that thin films of a ferroelectric nematic seeded by colloidal inclusions produce domain walls (DWs) in the shape of conics such as a parabola. These conics reduce the bound charge within the domains and at the DWs. An adequate description of the domain structures requires one to analyze the electrostatic energy, which is a challenging task. Instead, we demonstrate that a good approximation to the experimentally observed polydomain textures is obtained when the divergence of spontaneous polarization—which causes the bound charge—is heavily penalized by assuming that the elastic constant of splay in the Oseen-Frank energy is much larger than those for twist and bend. The model takes advantage of the fact that the polarization vector is essentially parallel to the nematic director throughout the sample. Published by the American Physical Society2024 
    more » « less
  3. We report the observation of the smectic A F , a liquid crystal phase of the ferroelectric nematic realm. The smectic A F is a phase of small polar, rod-shaped molecules that form two-dimensional fluid layers spaced by approximately the mean molecular length. The phase is uniaxial, with the molecular director, the local average long-axis orientation, normal to the layer planes, and ferroelectric, with a spontaneous electric polarization parallel to the director. Polarization measurements indicate almost complete polar ordering of the ∼10 Debye longitudinal molecular dipoles, and hysteretic polarization reversal with a coercive field ∼2 × 10 5 V / m is observed. The SmA F phase appears upon cooling in two binary mixtures of partially fluorinated mesogens: 2N/DIO, exhibiting a nematic (N)–smectic Z A (SmZ A )–ferroelectric nematic (N F )–SmA F phase sequence, and 7N/DIO, exhibiting an N–SmZ A –SmA F phase sequence. The latter presents an opportunity to study a transition between two smectic phases having orthogonal systems of layers. 
    more » « less
  4. Abstract The first demonstration of converse piezoelectricity in 3D fluids is presented by measuring a linear electromechanical effect in ferroelectric nematic liquid crystals. The observed piezoelectric coupling constant below 6 kHz electric field is larger than 1 nC/N, comparable to, or better than, values for the strongest solid piezoelectric materials. Symmetry considerations indicate that the alignment of the ferroelectric nematic liquid crystal in the experimental study is not optimized, so the observed signal is likely only a fraction of the theoretically achievable signal. Understanding the electromechanical response of ferroelectric nematics will enable mechanical energy harvesting and open up a new avenue for developing fluid actuators, micro positioners, and electrically tunable optical lenses. 
    more » « less
  5. We report the experimental determination of the structure and response to applied electric field of the lower-temperature nematic phase of the previously reported calamitic compound 4-[(4-nitrophenoxy)carbonyl]phenyl2,4-dimethoxybenzoate (RM734). We exploit its electro-optics to visualize the appearance, in the absence of applied field, of a permanent electric polarization density, manifested as a spontaneously broken symmetry in distinct domains of opposite polar orientation. Polarization reversal is mediated by field-induced domain wall movement, making this phase ferroelectric, a 3D uniaxial nematic having a spontaneous, reorientable polarization locally parallel to the director. This polarization density saturates at a low temperature value of ∼6 µC/cm 2 , the largest ever measured for a fluid or glassy material. This polarization is comparable to that of solid state ferroelectrics and is close to the average value obtained by assuming perfect, polar alignment of molecular dipoles in the nematic. We find a host of spectacular optical and hydrodynamic effects driven by ultralow applied field (E ∼ 1 V/cm), produced by the coupling of the large polarization to nematic birefringence and flow. Electrostatic self-interaction of the polarization charge renders the transition from the nematic phase mean field-like and weakly first order and controls the director field structure of the ferroelectric phase. Atomistic molecular dynamics simulation reveals short-range polar molecular interactions that favor ferroelectric ordering, including a tendency for head-to-tail association into polar, chain-like assemblies having polar lateral correlations. These results indicate a significant potential for transformative, new nematic physics, chemistry, and applications based on the enhanced understanding, development, and exploitation of molecular electrostatic interaction. 
    more » « less