skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Liquid Piezoelectric Materials: Linear Electromechanical Effect in Fluid Ferroelectric Nematic Liquid Crystals
Abstract The first demonstration of converse piezoelectricity in 3D fluids is presented by measuring a linear electromechanical effect in ferroelectric nematic liquid crystals. The observed piezoelectric coupling constant below 6 kHz electric field is larger than 1 nC/N, comparable to, or better than, values for the strongest solid piezoelectric materials. Symmetry considerations indicate that the alignment of the ferroelectric nematic liquid crystal in the experimental study is not optimized, so the observed signal is likely only a fraction of the theoretically achievable signal. Understanding the electromechanical response of ferroelectric nematics will enable mechanical energy harvesting and open up a new avenue for developing fluid actuators, micro positioners, and electrically tunable optical lenses.  more » « less
Award ID(s):
2210083
PAR ID:
10504347
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
34
Issue:
18
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Studies of sessile droplets and fluid bridges of a ferroelectric nematic liquid crystal in externally applied electric fields are presented. It is found that above a threshold, the interface of the fluid with air undergoes a fingering instability or ramification, resembling to Rayleigh-type instability observed in charged droplets in electric fields or circular drop-type instabilities observed in ferromagnetic liquids in magnetic field. The frequency dependence of the threshold voltage was determined in various geometries. The nematic director and ferroelectric polarization direction was found to point along the tip of the fingers that appear to repel each other, indicating that the ferroelectric polarization is essentially parallel to the director. The results are interpreted in connection to the Rayleigh and circular drop-type instabilities. 
    more » « less
  2. Abstract Recently, it is shown (Popov et al, Sci. Rep, 2017, 7, 1603) that chiral nematic liquid crystal films adopt biconvex lens shapes underwater, which may explain the formation of insect eyes, but restrict their practical application. Here it is demonstrated that chiral ferroelectric nematic liquid crystals, where the ferroelectric polarization aligns parallel to the air interface, can spontaneously form biconvex lens arrays in air when suspended in submillimeter‐size grids. Using Digital Holographic Microscopy, it is shown that the lens has a paraboloid shape and the curvature radius at the center decreases with increasing chiral dopant concentration, i.e., with decreasing helical pitch. Simultaneous measurements of the imaging properties of the lenses show the focal length depends on the pitch, thus offering tunability. The physical mechanism of formation of the self‐assembled ferroelectric nematic microlenses is also discussed. 
    more » « less
  3. Abstract Freestanding slender fluid filaments of room‐temperature ferroelectric nematic liquid crystals are described. They are stabilized either by internal electric fields of bound charges formed due to polarization splay or by external voltage applied between suspending wires. The phenomenon is similar to those observed in dielectric fluids, such as deionized water, except that in ferroelectric nematic materials the voltages required are three orders of magnitudes smaller and the aspect ratio is much higher. The observed ferroelectric fluid threads are not only unique and novel but also offer measurements of basic physical quantities, such as the ferroelectric polarization and viscosity. Ferroelectric nematic fluid threads may have practical applications in nano‐fluidic micron‐size logic devices, switches, and relays. 
    more » « less
  4. The success of nematic liquid crystals in displays and optical applications is due to the combination of their optical uniaxiality, fluidity, elasticity, responsiveness to electric fields and controllable coupling of the molecular orientation at the interface with solid surfaces. The discovery of a polar nematic phase opens new possibilities for liquid crystal-based applications, but also requires a new study of how this phase couples with surfaces. Here we explore the surface alignment of the ferroelectric nematic phase by testing different rubbed and unrubbed substrates that differ in coupling strength and anchoring orientation and find a variety of behaviors – in terms of nematic orientation, topological defects and electric field response – that are specific to the ferroelectric nematic phase and can be understood as a consequence of the polar symmetry breaking. In particular, we show that by using rubbed polymer surfaces it is easy to produce cells with a planar polar preferential alignment and that cell electrostatics ( e.g. grounding the electrodes) has a remarkable effect on the overall homogeneity of the ferroelectric ordering. 
    more » « less
  5. Abstract Tunable optical lenses are in great demand in modern technologies ranging from augmented and virtual reality to sensing and detection. In this work, electrically tunable microlenses based on a polymer‐stabilized chiral ferroelectric nematic liquid crystal are described. The power of the lens can be quickly (within 5 ms) varied by ≈500 diopters by ramping an in‐plane electric field from 0 to 2.5 V µm−1. Importantly, within this relatively low‐amplitude field range, the lens is optically isotropic; thus, its focal length is independent of the polarization of incoming light. This remarkable performance combines the advantages of electrically tuned isotropic lenses and the field‐controlled shape of the lens, which are unique properties of chiral ferroelectric nematic liquid crystals and have no counterpart in other liquid crystals. The achieved lens performance represents a significant step forward as compared to liquid lenses controlled by electrowetting and opens new possibilities in various applications such as biomimetic optics, security printing, and solar energy concentration. 
    more » « less