skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: A Plan for a Long-Term, Automated, Broadband Seismic Monitoring Network on the Global Seafloor
Abstract

Establishing an extensive and highly durable, long-term, seafloor network of autonomous broadband seismic stations to complement the land-based Global Seismographic Network has been a goal of seismologists for decades. Seismic signals, chiefly the vibrations from earthquakes but also signals generated by storms and other environmental processes, have been processed from land-based seismic stations to build intriguing but incomplete images of the Earth’s interior. Seismologists have mapped structures such as tectonic plates and other crustal remnants sinking deep into the mantle to obtain information on their chemical composition and physical state; but resolution of these structures from land stations is not globally uniform. Because the global surface is two-thirds ocean, increasing the number of seismic stations located in the oceans is critical for better resolution of the Earth’s interior and tectonic structures. A recommendation for a long-term seafloor seismic station pilot experiment is presented here. The overarching instrumentation goal of a pilot experiment is performance that will lead to the installation of a large number of long-term autonomous ocean-bottom seismic stations. The payoff of a network of stations separated from one another by a few hundred kilometers under the global oceans would be greatly refined resolution of the Earth’s interior at all depths. A second prime result would be enriched understanding of large-earthquake rupture processes in both oceanic and continental plates. The experiment would take advantage of newly available technologies such as robotic wave gliders that put an affordable autonomous prototype within reach. These technologies would allow data to be relayed to satellites from seismometers that are deployed on the seafloor with long-lasting, rechargeable batteries. Two regions are presented as promising arenas for such a prototype seafloor seismic station. One site is the central North Atlantic Ocean, and the other high-interest locale is the central South Pacific Ocean.

 
more » « less
Award ID(s):
1818792
NSF-PAR ID:
10482331
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Seismological Society of America
Date Published:
Journal Name:
Seismological Research Letters
Volume:
91
Issue:
3
ISSN:
0895-0695
Page Range / eLocation ID:
1343 to 1355
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY

    Seismograms contain multiple sources of seismic waves, from distinct transient signals such as earthquakes to continuous ambient seismic vibrations such as microseism. Ambient vibrations contaminate the earthquake signals, while the earthquake signals pollute the ambient noise’s statistical properties necessary for ambient-noise seismology analysis. Separating ambient noise from earthquake signals would thus benefit multiple seismological analyses. This work develops a multitask encoder–decoder network named WaveDecompNet to separate transient signals from ambient signals directly in the time domain for 3-component seismograms. We choose the active-volcanic Big Island in Hawai’i as a natural laboratory given its richness in transients (tectonic and volcanic earthquakes) and diffuse ambient noise (strong microseism). The approach takes a noisy 3-component seismogram as input and independently predicts the 3-component earthquake and noise waveforms. The model is trained on earthquake and noise waveforms from the STandford EArthquake Dataset (STEAD) and on the local noise of seismic station IU.POHA. We estimate the network’s performance by using the explained variance metric on both earthquake and noise waveforms. We explore different neural network designs for WaveDecompNet and find that the model with long-short-term memory (LSTM) performs best over other structures. Overall, we find that WaveDecompNet provides satisfactory performance down to a signal-to-noise ratio (SNR) of 0.1. The potential of the method is (1) to improve broad-band SNR of transient (earthquake) waveforms and (2) to improve local ambient noise to monitor the Earth’s structure using ambient noise signals. To test this, we apply a short-time average to a long-time average filter and improve the number of detected events. We also measure single-station cross-correlation functions of the recovered ambient noise and establish their improved coherence through time and over different frequency bands. We conclude that WaveDecompNet is a promising tool for a broad range of seismological research.

     
    more » « less
  2. Vega, FJ (Ed.)
    The Bransfield Basin is a back-arc basin located in Western Antarctica between the South Shetland Islands and Antarctic Peninsula. Although the subduction of the Phoenix plate under the South Shetland block has ceased, extension continues through a combination of slab rollback and transtensional motions between the Scotia and Antarctic plates. This process has created a continental rift in the basin, interleaved with volcanic islands and seamounts, which may be near the transition from rifting to seafloor spreading. In the framework of the BRAVOSEIS project (2017–2020), we deployed a dense amphibious seismic network in the Bransfield Strait comprising 15 land stations and 24 ocean-bottom seismometers, as well as a network of 6 moored hydrophones; and acquired marine geophysics data including multibeam bathymetry, sub-bottom profiler, gravity & magnetics, multi-channel seismics, and seismic refraction data. The experiment has collected a unique, high quality, and multifaceted geophysical data set in the Central Bransfield Basin, with a special focus on Orca and Humpback seamounts. Preliminary results confirm that the Bransfield region has slab-related intermediate depth seismicity, with earthquake characteristics suggesting distributed extension across the rift. Gravity and magnetic highs delineate a segmented rift with along-axis variations that are consistent with increased accumulated strain to the northeast. Orca volcano shows evidences of an active caldera and magma accumulation at shallow depths, while Humpback volcano has evolved past the caldera stage and is currently dominated by rifting structures. These differences suggest that volcanic evolution is influenced by the position along the rift. Although a lot of analysis remains, these results provide useful constraints on the structure and dynamics of the Bransfield rift and associated volcanoes. 
    more » « less
  3. null (Ed.)
    The tectonic and paleoceanographic setting of the Great Australian Bight (GAB) and the Mentelle Basin (MB; adjacent to Naturaliste Plateau) offered an outstanding opportunity to investigate Cretaceous and Cenozoic climate change and ocean dynamics during the last phase of breakup among remnant Gondwana continents. Sediment recovered from sites in both regions during International Ocean Discovery Program Expedition 369 will provide a new perspective on Earth’s temperature variation at sub-polar latitudes (60°–62°S) across the extremes of the mid-Cretaceous hot greenhouse climate and the cooling that followed. The primary goals of the expedition were to • Investigate the timing and causes for the rise and collapse of the Cretaceous hot greenhouse climate and how this climate mode affected the climate-ocean system and oceanic biota; • Determine the relative roles of productivity, ocean temperature, and ocean circulation at high southern latitudes during Cretaceous oceanic anoxic events (OAEs); • Identify the main source regions for deep-water and intermediate-water masses in the southeast Indian Ocean and how these changed during Gondwana breakup; • Characterize how oceanographic conditions at the MB changed during the Cenozoic opening of the Tasman Passage and restriction of the Indonesian Gateway; • Resolve questions on the volcanic and sedimentary origins of the Australo-Antarctic Gulf and Mentelle Basin and provide stratigraphic control on the age and nature of the prebreakup successions. Hole U1512A in the GAB recovered a 691 m thick sequence of black claystone ranging from the early Turonian to the early Campanian. Age control is primarily based on calcareous nannofossils, but the presence of other microfossil groups provided consistent but low-resolution control. Despite the lithologic uniformity, long- and short-term variations in natural gamma ray and magnetic susceptibility intensities show cyclic alternations that suggest an orbital control of sediment deposition that will be useful for developing an astrochronology for the sequence. Sites U1513–U1516 were drilled between 850 and 3900 m water depth in the MB and penetrated 774, 517, 517, and 542 meters below seafloor (mbsf), respectively. Under a thin layer of Pleistocene–upper Miocene sediment, Site U1513 cored a succession of Cretaceous units from the Campanian to the Valanginian. Site U1514 sampled an expanded Pleistocene–Eocene sequence and terminated in the upper Albian. The Cenomanian–Turonian interval at Site U1514 recovered deformed sedimentary rocks that probably represent a detachment zone. Site U1515 is located on the west Australian margin at 850 m water depth and was the most challenging site to core because much of the upper 350 m was either chert or poorly consolidated sand. However, the prebreakup Jurassic(?) sediments interpreted from the seismic profiles were successfully recovered. Site U1516 cored an expanded Pleistocene, Neogene, and Paleogene section and recovered a complete Cenomanian/Turonian boundary interval containing five layers with high total organic carbon content. Recovery of well-preserved calcareous microfossil assemblages from different paleodepths will enable generation of paleotemperature and biotic records that span the rise and collapse of the Cretaceous hot greenhouse (including OAEs 1d and 2), providing insight to resultant changes in deep-water and surface water circulation that can be used to test predictions from earth system models. Paleotemperature proxies and other data will reveal the timing, magnitude, and duration of peak hothouse temperatures and any cold snaps that could have allowed growth of a polar ice sheet. The sites will also record the mid-Eocene–early Oligocene opening of the Tasman Gateway and the Miocene–Pliocene restriction of the Indonesian Gateway; both passages have important effects on global oceanography and climate. Understanding the paleoceanographic changes in a regional context provides a global test on models of Cenomanian–Turonian oceanographic and climatic evolution related both to extreme Turonian warmth and the evolution of OAE 2. The Early Cretaceous volcanic rocks and underlying Jurassic(?) sediments cored in different parts of the MB provide information on the timing of different stages of the Gondwana breakup. The recovered cores provide sufficient new age constraints to underpin a reevaluation of the basin-wide seismic stratigraphy and tectonic models for the region. 
    more » « less
  4. null (Ed.)
    The tectonic and paleoceanographic setting of the Great Australian Bight (GAB) and the Mentelle Basin (adjacent to Naturaliste Plateau) offered an opportunity to investigate Cretaceous and Cenozoic climate change and ocean dynamics during the last phase of breakup among remnant Gondwana continents. Sediment recovered from sites in both regions during International Ocean Discovery Program Expedition 369 will provide a new perspective on Earth’s temperature variation at subpolar latitudes (60°–62°S) across the extremes of the mid-Cretaceous hot greenhouse climate and the cooling that followed. Basalts and prebreakup sediments were also recovered and will provide constraints regarding the type and age of the Mentelle Basin basement and processes operating during the break up of Gondwana. The primary goals of the expedition were to 1. Investigate the timing and causes for the rise and collapse of the Cretaceous hot greenhouse climate and how this climate mode affected the climate–ocean system and oceanic biota; 2. Determine the relative roles of productivity, ocean temperature, and ocean circulation at high southern latitudes during Cretaceous oceanic anoxic events (OAEs); 3. Investigate potential source regions for deep-water and intermediate-water masses in the southeast Indian Ocean and how these changed during Gondwana breakup; 4. Characterize how oceanographic conditions at the Mentelle Basin changed during the Cenozoic opening of the Tasman Gateway and restriction of the Indonesian Gateway; and 5. Resolve questions on the volcanic and sedimentary origins of the Australo-Antarctic Gulf and Mentelle Basin and provide stratigraphic control on the age and nature of the prebreakup successions. Hole U1512A in the GAB recovered a 691 m thick sequence of black claystone ranging from the lower Turonian to the lower Campanian. Age control is primarily based on calcareous nannofossils, but the presence of other microfossil groups provided consistent low-resolution control. Despite the lithologic uniformity, long- and short-term variations in natural gamma radiation and magnetic susceptibility show cyclic alternations that suggest an orbital control of sediment deposition, which will be useful for developing an astrochronology for the sequence. Sites U1513, U1514, U1515, and U1516 were drilled in water depths between 850 and 3900 m in the Mentelle Basin and penetrated 774, 517, 517, and 542 meters below seafloor, respectively. Under a thin layer of Pleistocene to upper Miocene sediment, Site U1513 cored a succession of Cretaceous units from the Campanian to the Valanginian, as well as a succession of basalts. Site U1514 sampled an expanded Pleistocene to Eocene sequence and terminated in the upper Albian. The Cenomanian to Turonian interval at Site U1514 is represented by deformed sedimentary rocks that probably represent a detachment zone. Site U1515 is located on the west Australian margin at 850 m water depth and was the most challenging site to core because much of the upper 350 m was either chert or poorly consolidated sand. However, the prebreakup Jurassic(?) sediments interpreted from the seismic profiles were successfully recovered. Site U1516 cored an expanded Pleistocene, Neogene, and Paleogene section and recovered a complete Cenomanian/Turonian boundary interval containing five layers with high organic carbon content. Study of the well-preserved calcareous microfossil assemblages from different paleodepths will enable generation of paleotemperature and biotic records that span the rise and collapse of the Cretaceous hot greenhouse (including OAEs 1d and 2), providing insight to resultant changes in deep-water and surface water circulation that can be used to test predictions from earth system models. Measurements of paleotemperature proxies and other data will reveal the timing, magnitude, and duration of peak hothouse conditions and any cold snaps that could have allowed growth of a polar ice sheet. The sites contain a record of the mid-Eocene to early Oligocene opening of the Tasman Gateway and the Miocene to Pliocene restriction of the Indonesian Gateway; both passages have important effects on global oceanography and climate. Advancing understanding of the paleoceanographic changes in a regional context will provide a global test on models of Cenomanian to Turonian oceanographic and climatic evolution related both to extreme Turonian warmth and the evolution of OAE 2. The Early Cretaceous volcanic rocks and underlying Jurassic(?) sediments cored in different parts of the Mentelle Basin provide information on the timing of different stages of the Gondwana breakup. The recovered cores provide sufficient new age constraints to underpin a reevaluation of the basin-wide seismic stratigraphy and tectonic models for the region. 
    more » « less
  5. Abstract

    Since the 1919 foundation of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI), the fields of volcano seismology and acoustics have seen dramatic advances in instrumentation and techniques, and have undergone paradigm shifts in the understanding of volcanic seismo-acoustic source processes and internal volcanic structure. Some early twentieth-century volcanological studies gave equal emphasis to barograph (infrasound and acoustic-gravity wave) and seismograph observations, but volcano seismology rapidly outpaced volcano acoustics and became the standard geophysical volcano-monitoring tool. Permanent seismic networks were established on volcanoes (for example) in Japan, the Philippines, Russia, and Hawai‘i by the 1950s, and in Alaska by the 1970s. Large eruptions with societal consequences generally catalyzed the implementation of new seismic instrumentation and led to operationalization of research methodologies. Seismic data now form the backbone of most local ground-based volcano monitoring networks worldwide and play a critical role in understanding how volcanoes work. The computer revolution enabled increasingly sophisticated data processing and source modeling, and facilitated the transition to continuous digital waveform recording by about the 1990s. In the 1970s and 1980s, quantitative models emerged for long-period (LP) event and tremor sources in fluid-driven cracks and conduits. Beginning in the 1970s, early models for volcano-tectonic (VT) earthquake swarms invoking crack tip stresses expanded to involve stress transfer into the wall rocks of pressurized dikes. The first deployments of broadband seismic instrumentation and infrasound sensors on volcanoes in the 1990s led to discoveries of new signals and phenomena. Rapid advances in infrasound technology; signal processing, analysis, and inversion; and atmospheric propagation modeling have now established the role of regional (15–250 km) and remote (> 250 km) ground-based acoustic systems in volcano monitoring. Long-term records of volcano-seismic unrest through full eruptive cycles are providing insight into magma transport and eruption processes and increasingly sophisticated forecasts. Laboratory and numerical experiments are elucidating seismo-acoustic source processes in volcanic fluid systems, and are observationally constrained by increasingly dense geophysical field deployments taking advantage of low-power, compact broadband, and nodal technologies. In recent years, the fields of volcano geodesy, seismology, and acoustics (both atmospheric infrasound and ocean hydroacoustics) are increasingly merging. Despite vast progress over the past century, major questions remain regarding source processes, patterns of volcano-seismic unrest, internal volcanic structure, and the relationship between seismic unrest and volcanic processes.

     
    more » « less