Understanding baseline O3 is important as it defines the fraction of O3 coming from global sources and not subject to local control. We report the occurrence and sources of high baseline ozone days, defined as a day where the daily maximum 8 h average (MDA8) exceeds 70 ppb, as observed at the Mount Bachelor Observatory (MBO, 2.8 km asl) in Central Oregon from 2004 to 2022. We used various indicators and enhancement ratios to categorize each high-O3 day: carbon monoxide (CO), aerosol scattering, the water vapor mixing ratio (WV), the aerosol scattering-to-CO ratio, backward trajectories, and the NOAA Hazard Mapping System Fire and Smoke maps. Using these, we identified four causes of high-O3 days at the MBO: Upper Troposphere/Lower Stratosphere intrusions (UTLS), Asian long-range transport (ALRT), a mixed UTLS/ALRT category, and events enhanced by wildfire emissions. Wildfire sources were further divided into two categories: smoke transported in the boundary layer to the MBO and smoke transported in the free troposphere from more distant fires. Over the 19-year period, 167 high-ozone days were identified, with an increasing fraction due to contributions from wildfire emissions and a decreasing fraction of ALRT events. We further evaluated trends in the O3 and CO data distributions by season. For O3, we found an overall increase in the mean and median values of 2.2 and 1.5 ppb, respectively, from the earliest part of the record (2004–2013) compared to the later part (2014–2022), but no significant linear trends in any season. For CO, we found a significant positive trend in the summer 95th percentiles, associated with increasing fires in the Western U.S., and a strong negative trend in the springtime values at all percentiles (1.6% yr−1 for 50th percentile). This decline was likely associated with decreasing emissions from East Asia. Overall, our findings are consistent with the positive trend in wildfires in the Western United States and the efforts in Asia to decrease emissions. This work demonstrates the changing influence of these two source categories on global background O3 and CO. 
                        more » 
                        « less   
                    
                            
                            Investigation of the Parameters Influencing Baseline Ozone in the Western United States: A Statistical Modeling Approach
                        
                    
    
            Ground-level ozone (O3) is a key atmospheric gas that controls the oxidizing capacity of the atmosphere and has significant health and environmental implications. Due to ongoing reductions in the concentrations of O3 precursors, it is important to assess the variables influencing baseline O3 to inform pollution control strategies. This study uses a statistical model to characterize daily peak 8 h O3 concentrations at the Mount Bachelor Observatory (MBO), a rural mountaintop research station in central Oregon, from 2006–2020. The model was constrained by seven predictive variables: year, day-of-year, relative humidity (RH), aerosol scattering, carbon monoxide (CO), water vapor (WV) mixing ratio, and tropopause pressure. RH, aerosol scattering, CO, and WV mixing ratio were measured at MBO, and tropopause pressure was measured via satellite. For the full 15-year period, the model represents 61% of the variance in daily peak 8 h O3, and all predictive variables have a statistically significant (p < 0.05) impact on daily peak 8 h O3 concentrations. Our results show that daily peak 8 h O3 concentrations at MBO are well-predicted by the model, thereby providing insight into what affects baseline O3 levels at a rural site on the west coast of North America. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1829893
- PAR ID:
- 10482426
- Publisher / Repository:
- Atmosphere
- Date Published:
- Journal Name:
- Atmosphere
- Volume:
- 13
- Issue:
- 11
- ISSN:
- 2073-4433
- Page Range / eLocation ID:
- 1883
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract. We characterize the aerosol physical and optical properties of 13 transported biomass burning (BB) events. BB events included long-rangeinfluence from fires in Alaskan and Siberian boreal forests transported to Mt. Bachelor Observatory (MBO) in the free troposphere (FT) over 8–14+ d and regional wildfires in northern California and southwestern Oregon transported to MBO in the boundary layer (BL) over 10 h to 3 d. Intensive aerosol optical properties and normalized enhancement ratios for BB events were derived from measured aerosol light scattering coefficients (σscat), aerosol light-absorbing coefficients (σabs), fine particulate matter (PM1), and carbon monoxide (CO) measurements made from July to September 2019, with particle size distribution collected from August to September. The observations showed that the Siberian BB events had a lower scattering Ångström exponent (SAE), a higher mass scattering efficiency (MSE; Δσscat/ΔPM1), and a bimodal aerosol size distribution with a higher geometric mean diameter (Dg). We hypothesize that the larger particles and associated scatteringproperties were due to the transport of fine dust alongside smoke in addition to contributions from condensation of secondary aerosol, coagulation of smaller particles, and aqueous-phase processing duringtransport. Alaskan and Siberian boreal forest BB plumes were transported long distances in the FT and characterized by lower absorptionÅngström exponent (AAE) values indicative of black carbon (BC)dominance in the radiative budget. Significantly elevated AAE values wereonly observed for BB events with <1 d transport, which suggests strong production of brown carbon (BrC) in these plumes but limited radiative forcing impacts outside of the immediate region.more » « less
- 
            Atmospheric aerosol particles with a high viscosity may become inhomogeneously mixed during chemical processing. Models have predicted gradients in condensed phase reactant concentration throughout particles as the result of diffusion and chemical reaction limitations, termed chemical gradients. However, these have never been directly observed for atmospherically relevant particle diameters. We investigated the reaction between ozone and aerosol particles composed of xanthan gum and FeCl 2 and observed the in situ chemical reaction that oxidized Fe 2+ to Fe 3+ using X-ray spectromicroscopy. Iron oxidation state of particles as small as 0.2 μm in diameter were imaged over time with a spatial resolution of tens of nanometers. We found that the loss off Fe 2+ accelerated with increasing ozone concentration and relative humidity, RH. Concentric 2-D column integrated profiles of the Fe 2+ fraction, α , out of the total iron were derived and demonstrated that particle surfaces became oxidized while particle cores remained unreacted at RH = 0–20%. At higher RH, chemical gradients evolved over time, extended deeper from the particle surface, and Fe 2+ became more homogeneously distributed. We used the kinetic multi-layer model for aerosol surface and bulk chemistry (KM-SUB) to simulate ozone reaction constrained with our observations and inferred key parameters as a function of RH including Henry's Law constant for ozone, H O3 , and diffusion coefficients for ozone and iron, D O3 and D Fe , respectively. We found that H O3 is higher in our xanthan gum/FeCl 2 particles than for water and increases when RH decreased from about 80% to dry conditions. This coincided with a decrease in both D O3 and D Fe . In order to reproduce observed chemical gradients, our model predicted that ozone could not be present further than a few nanometers from a particle surface indicating near surface reactions were driving changes in iron oxidation state. However, the observed chemical gradients in α observed over hundreds of nanometers must have been the result of iron transport from the particle interior to the surface where ozone oxidation occurred. In the context of our results, we examine the applicability of the reacto-diffusive framework and discuss diffusion limitations for other reactive gas-aerosol systems of atmospheric importance.more » « less
- 
            Abstract. Information on liquid–liquid phase separation (LLPS) and viscosity (ordiffusion) within secondary organic aerosol (SOA) is needed to improvepredictions of particle size, mass, reactivity, and cloud nucleatingproperties in the atmosphere. Here we report on LLPS and viscosities withinSOA generated by the photooxidation of diesel fuel vapors. Diesel fuelcontains a wide range of volatile organic compounds, and SOA generated bythe photooxidation of diesel fuel vapors may be a good proxy for SOA fromanthropogenic emissions. In our experiments, LLPS occurred over the relativehumidity (RH) range of ∼70 % to ∼100 %,resulting in an organic-rich outer phase and a water-rich inner phase. Theseresults may have implications for predicting the cloud nucleating propertiesof anthropogenic SOA since the presence of an organic-rich outer phase athigh-RH values can lower the supersaturation with respect to water requiredfor cloud droplet formation. At ≤10 % RH, the viscosity was ≥1×108 Pa s, which corresponds to roughly the viscosity of tarpitch. At 38 %–50 % RH, the viscosity was in the range of 1×108 to 3×105 Pa s. These measured viscosities areconsistent with predictions based on oxygen to carbon elemental ratio (O:C)and molar mass as well as predictions based on the number of carbon,hydrogen, and oxygen atoms. Based on the measured viscosities and theStokes–Einstein relation, at ≤10 % RH diffusion coefficients oforganics within diesel fuel SOA is ≤5.4×10-17 cm2 s−1 and the mixing time of organics within 200 nm diesel fuel SOAparticles (τmixing) is 50 h. These small diffusion coefficientsand large mixing times may be important in laboratory experiments, where SOAis often generated and studied using low-RH conditions and on timescales ofminutes to hours. At 38 %–50 % RH, the calculated organic diffusioncoefficients are in the range of 5.4×10-17 to 1.8×10-13 cm2 s−1 and calculated τmixing values arein the range of ∼0.01 h to ∼50 h. These valuesprovide important constraints for the physicochemical properties ofanthropogenic SOA.more » « less
- 
            Abstract The Stratospheric Total Aerosol Counter (STAC) is a lightweight balloon‐borne instrument that utilizes condensational growth techniques to measure the total aerosol concentration. STAC is a miniaturized version of the legacy Wyoming condensation particle counter that operated from 1974 through 2020 in the middle latitudes and polar regions, with a few measurements in the tropics. Here we provide a description of the STAC instrument and the total aerosol measurement record, demonstrating that typical total aerosol profiles exhibit a peak in number mixing ratio, with values between 800 and 2,000 particles per mg of air (mg−1), just below the lapse rate tropopause (LRT). In the tropics and middle latitudes, mixing ratios decrease above the LRT likely due to coagulation and scavenging that results in a transfer of mass to the fewer but larger aerosol particles of the Junge layer. Exceptions to this occur in the spring time in the middle latitudes where a new particle layer between 20 and 25 km is frequently observed. In the poles, total aerosol profiles exhibit two distinct features: new particle formation in austral spring, and an increasing mixing ratio above 17 km likely due to the presence of meteoric smoke that has been concentrated within the polar vortex. High observed stratospheric particle mixing ratios, in excess of 2,000 mg−1, are observed in the polar new particle layer and at the top of polar profiles.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    