Given vector representations for individual words, it is necessary to compute vector representations of sentences for many applications in a compositional manner, often using artificial neural networks. Relatively little work has explored the internal structure and properties of such sentence vectors. In this paper, we explore the properties of sentence vectors in the context of automatic summarization. In particular, we show that cosine similarity between sentence vectors and document vectors is strongly correlated with sentence importance and that vector semantics can identify and correct gaps between the sentences chosen so far and the document. In addition, we identify specific dimensions which are linked to effective summaries. To our knowledge, this is the first time specific dimensions of sentence embeddings have been connected to sentence properties. We also compare the features of different methods of sentence embeddings. Many of these insights have applications in uses of sentence embeddings far beyond summarization.
more »
« less
Bridging Continuous and Discrete Spaces: Interpretable Sentence Representation Learning via Compositional Operations
Traditional sentence embedding models encode sentences into vector representations to capture useful properties such as the semantic similarity between sentences. However, in addition to similarity, sentence semantics can also be interpreted via compositional operations such as sentence fusion or difference. It is unclear whether the compositional semantics of sentences can be directly reflected as compositional operations in the embedding space. To more effectively bridge the continuous embedding and discrete text spaces, we explore the plausibility of incorporating various compositional properties into the sentence embedding space that allows us to interpret embedding transformations as compositional sentence operations. We propose InterSent, an end-to-end framework for learning interpretable sentence embeddings that supports compositional sentence operations in the embedding space. Our method optimizes operator networks and a bottleneck encoder-decoder model to produce meaningful and interpretable sentence embeddings. Experimental results demonstrate that our method significantly improves the interpretability of sentence embeddings on four textual generation tasks over existing approaches while maintaining strong performance on traditional semantic similarity tasks.
more »
« less
- Award ID(s):
- 2105329
- PAR ID:
- 10482427
- Publisher / Repository:
- Association for Computational Linguistics
- Date Published:
- Journal Name:
- Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
- Page Range / eLocation ID:
- 14584 to 14595
- Format(s):
- Medium: X
- Location:
- Singapore
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Sentence embedding methods offer a powerful approach for working with short textual constructs or sequences of words. By representing sentences as dense numerical vectors, many natural language processing (NLP) applications have improved their performance. However, relatively little is understood about the latent structure of sentence embeddings. Specifically, research has not addressed whether the length and structure of sentences impact the sentence embedding space and topology. This paper reports research on a set of comprehensive clustering and network analyses targeting sentence and sub-sentence embedding spaces. Results show that one method generates the most clusterable embeddings. In general, the embeddings of span sub-sentences have better clustering properties than the original sentences. The results have implications for future sentence embedding models and applications.more » « less
-
Given a citation in the body of a research paper, cited text identification aims to find the sentences in the cited paper that are most relevant to the citing sentence. The task is fundamentally one of sentence matching, where affinity is often assessed by a cosine similarity between sentence embeddings. However, (a) sentences may not be well-represented by a single embedding because they contain multiple distinct semantic aspects, and (b) good matches may not require a strong match in all aspects. To overcome these limitations, we propose a simple and efficient unsupervised method for cited text identification that adapts an asymmetric similarity measure to allow partial matches of multiple aspects in both sentences. On the CL-SciSumm dataset we find that our method outperforms a baseline symmetric approach, and, surprisingly, also outperforms all supervised and unsupervised systems submitted to past editions of CL-SciSumm Shared Task 1a.more » « less
-
Learning sentence representations which capture rich semantic meanings has been crucial for many NLP tasks. Pre-trained language models such as BERT have achieved great success in NLP, but sentence embeddings extracted directly from these models do not perform well without fine-tuning. We propose Contrastive Learning of Sentence Representations (CLSR), a novel approach which applies contrastive learning to learn universal sentence representations on top of pre-trained language models. CLSR utilizes semantic similarity of two sentences to construct positive instance for contrastive learning. Semantic information that has been captured by the pre-trained models is kept by getting sentence embeddings from these models with proper pooling strategy. An encoder followed by a linear projection takes these embeddings as inputs and is trained under a contrastive objective. To evaluate the performance of CLSR, we run experiments on a range of pre-trained language models and their variants on a series of Semantic Contextual Similarity tasks. Results show that CLSR gains significant performance improvements over existing SOTA language models.more » « less
-
Unsupervised word embeddings have become a popular approach of word representation in NLP tasks. However there are limitations to the semantics represented by unsupervised embeddings, and inadequate fine-tuning of embeddings can lead to suboptimal performance. We propose a novel learning technique called Delta Embedding Learning, which can be applied to general NLP tasks to improve performance by optimized tuning of the word embeddings. A structured regularization is applied to the embeddings to ensure they are tuned in an incremental way. As a result, the tuned word embeddings become better word representations by absorbing semantic information from supervision without “forgetting.” We apply the method to various NLP tasks and see a consistent improvement in performance. Evaluation also confirms the tuned word embeddings have better semantic properties.more » « less