skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Causal View of Entity Bias in (Large) Language Models
Entity bias widely affects pretrained (large) language models, causing them to rely on (biased) parametric knowledge to make unfaithful predictions. Although causality-inspired methods have shown great potential to mitigate entity bias, it is hard to precisely estimate the parameters of underlying causal models in practice. The rise of black-box LLMs also makes the situation even worse, because of their inaccessible parameters and uncalibrated logits. To address these problems, we propose a specific structured causal model (SCM) whose parameters are comparatively easier to estimate. Building upon this SCM, we propose causal intervention techniques to mitigate entity bias for both white-box and black-box settings. The proposed causal intervention perturbs the original entity with neighboring entities. This intervention reduces specific biasing information pertaining to the original entity while still preserving sufficient semantic information from similar entities. Under the white-box setting, our training-time intervention improves OOD performance of PLMs on relation extraction (RE) and machine reading comprehension (MRC) by 5.7 points and by 9.1 points, respectively. Under the black-box setting, our in-context intervention effectively reduces the entity-based knowledge conflicts of GPT-3.5, achieving up to 20.5 points of improvement of exact match accuracy on MRC and up to 17.6 points of reduction in memorization ratio on RE.  more » « less
Award ID(s):
2333736
PAR ID:
10482435
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Association for Computational Linguistics
Date Published:
Journal Name:
A Causal View of Entity Bias in (Large) Language Models
Page Range / eLocation ID:
15173 to 15184
Format(s):
Medium: X
Location:
Singapore
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent literature focuses on utilizing the entity information in the sentence-level relation extraction (RE), but this risks leaking superficial and spurious clues of relations. As a result, RE still suffers from unintended entity bias, i.e., the spurious correlation between entity mentions (names) and relations. Entity bias can mislead the RE models to extract the relations that do not exist in the text. To combat this issue, some previous work masks the entity mentions to prevent the RE models from over-fitting entity mentions. However, this strategy degrades the RE performance because it loses the semantic information of entities. In this paper, we propose the CoRE (Counterfactual Analysis based Relation Extraction) debiasing method that guides the RE models to focus on the main effects of textual context without losing the entity information. We first construct a causal graph for RE, which models the dependencies between variables in RE models. Then, we propose to conduct counterfactual analysis on our causal graph to distill and mitigate the entity bias, that captures the causal effects of specific entity mentions in each instance. Note that our CoRE method is model-agnostic to debias existing RE systems during inference without changing their training processes. Extensive experimental results demonstrate that our CoRE yields significant gains on both effectiveness and generalization for RE. The source code is provided at: https://github.com/vanoracai/CoRE. 
    more » « less
  2. Taxonomies, which organize knowledge hierarchically, support various practical web applications such as product navigation in online shopping and user profle tagging on social platforms. Given the continued and rapid emergence of new entities, maintaining a comprehensive taxonomy in a timely manner through human annotation is prohibitively expensive. Therefore, expanding a taxonomy automatically with new entities is essential. Most existing methods for expanding taxonomies encode entities into vector embeddings (i.e., single points). However, we argue that vectors are insufcient to model the “is-a” hierarchy in taxonomy (asymmetrical relation), because two points can only represent pairwise similarity (symmetrical relation). To this end, we propose to project taxonomy entities into boxes (i.e., hyperrectangles). Two boxes can be "contained", "disjoint" and "intersecting", thus naturally representing an asymmetrical taxonomic hierarchy. Upon box embeddings, we propose a novel model BoxTaxo for taxonomy expansion. The core of BoxTaxo is to learn boxes for entities to capture their child-parent hierarchies. To achieve this, BoxTaxo optimizes the box embeddings from a joint view of geometry and probability. BoxTaxo also ofers an easy and natural way for inference: examine whether the box of a given new entity is fully enclosed inside the box of a candidate parent from the existing taxonomy. Extensive experiments on two benchmarks demonstrate the efectiveness of BoxTaxo compared to vector based models. 
    more » « less
  3. In a black-box setting, the adversary only has API access to the target model and each query is expensive. Prior work on black-box adversarial examples follows one of two main strategies: (1) transfer attacks use white-box attacks on local models to find candidate adversarial examples that transfer to the target model, and (2) optimization-based attacks use queries to the target model and apply optimization techniques to search for adversarial examples. We propose hybrid attacks that combine both strategies, using candidate adversarial examples from local models as starting points for optimization-based attacks and using labels learned in optimization-based attacks to tune local models for finding transfer candidates. We empirically demonstrate on the MNIST, CIFAR10, and ImageNet datasets that our hybrid attack strategy reduces cost and improves success rates, and in combination with our seed prioritization strategy, enables batch attacks that can efficiently find adversarial examples with only a handful of queries. 
    more » « less
  4. null (Ed.)
    Knowledge Graph (KG) completion research usually focuses on densely connected benchmark datasets that are not representative of real KGs. We curate two KG datasets that include biomedical and encyclopedic knowledge and use an existing commonsense KG dataset to explore KG completion in the more realistic setting where dense connectivity is not guaranteed. We develop a deep convolutional network that utilizes textual entity representations and demonstrate that our model outperforms recent KG completion methods in this challenging setting. We find that our model’s performance improvements stem primarily from its robustness to sparsity. We then distill the knowledge from the convolutional network into a student network that re-ranks promising candidate entities. This re-ranking stage leads to further improvements in performance and demonstrates the effectiveness of entity re-ranking for KG completion. 
    more » « less
  5. We study dangling-aware entity alignment in knowledge graphs (KGs), which is an underexplored but important problem. As different KGs are naturally constructed by different sets of entities, a KG commonly contains some dangling entities that cannot find counterparts in other KGs. Therefore, dangling-aware entity alignment is more realistic than the conventional entity alignment where prior studies simply ignore dangling entities. We propose a framework using mixed high-order proximities on dangling-aware entity alignment. Our framework utilizes both the local high-order proximity in a nearest neighbor subgraph and the global high-order proximity in an embedding space for both dangling detection and entity alignment. Extensive experiments with two evaluation settings shows that our method more precisely detects dangling entities, and better aligns matchable entities. Further investigations demonstrate that our framework can mitigate the hubness problem on dangling-aware entity alignment. 
    more » « less