skip to main content

Title: Northeast Pacific eelgrass fish communities characterized by environmental DNA represent local diversity and show habitat specificity

Fish biodiversity is an important indicator of ecosystem health and a priority for the National Park Service in Drakes Estero, a shallow estuary within Point Reyes National Seashore, Marin County, California. However, fish diversity has yet to be described following the removal of oyster aquaculture infrastructure within Drakes Estero from 2016 to 2017. We used environmental DNA (eDNA) to characterize fish biodiversity within Drakes Estero. We amplified fish eDNA with MiFish primers and classified sequences with a 12S rRNA reference database. We identified 110 unique operational taxonomic units (OTUs, at 97% similarity) within the estuary from 40 samples across 4 sites. From these 110 OTUs, we identified 9 species and 13 taxonomic groups at the genus, family, order, or class level within the estuary. Species‐level assignments are limited by a lack of representative sequences targeted by the MiFish primers for 42% of eelgrass fishes in our region that we identified from a literature review in the Northeast Pacific (NEP) from Elkhorn Slough to Humboldt Bay. Despite this limitation, we identified some common Drakes Estero fishes with our eDNA surveys, including the three‐spined stickleback (Gasterosteus aculeatus), Pacific staghorn sculpin (Leptocottus armatus), surfperches (Embiotocidae), gobies (Gobiidae), and a hound shark (Triakidae). We also compared fish biodiversity within the estuary with that from nearby Limantour Beach, a coastal site. Limantour beach differed in community composition from Drakes Estero and was characterized by high relative abundances of anchovy (Engraulissp.) and herring (Clupeasp.). Thus, we can distinguish estuarine and non‐estuarine sites (<10 km away) with eDNA surveys. Further, eDNA surveys accounted for greater fish diversity than seine surveys conducted at one site within the estuary. Environmental DNA surveys will likely be a useful tool to monitor fish biodiversity across eelgrass estuaries in the Northeast Pacific, especially as reference databases become better populated with regional species.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Date Published:
Journal Name:
Environmental DNA
Page Range / eLocation ID:
706 to 722
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Biodiversity surveys may require the use of multiple types of sampling gear to maximize the efficiency of species detections, yet few studies have investigated how to optimally distribute effort among gear. In this study, we conducted eDNA metabarcoding and capture‐based sampling surveys (electrofishing, fyke netting, gillnetting, and seining) to sample fish species richness in a large northern temperate lake. We evaluated the success of the sampling methods individually and in combination to determine the allocation of effort and cost across sampling gear that provides the optimal approach for lake‐wide species inventories. We found that eDNA metabarcoding detected more species than any other sampling method, including 11 species that were not detected with any capture‐based approach. Optimal gear combination analyses revealed that detected species richness is maximized when most of the effort or budget is allocated to eDNA metabarcoding, with smaller allocations to seining and fyke netting. eDNA metabarcoding and capture sampling gear showed similar patterns of spatial heterogeneity in the fish community across habitat types, with pelagic samples forming a group that was distinct from nearshore samples. Our results indicate that eDNA metabarcoding is a rapid and cost‐efficient tool for biodiversity monitoring and that assessing the complementarity of multiple sampling types can inform the development of optimal approaches for measuring fish species richness.

    more » « less
  2. Abstract

    The genomic revolution has fundamentally changed how we survey biodiversity on earth. High‐throughput sequencing (“HTS”) platforms now enable the rapid sequencing ofDNAfrom diverse kinds of environmental samples (termed “environmentalDNA” or “eDNA”). CouplingHTSwith our ability to associate sequences fromeDNAwith a taxonomic name is called “eDNAmetabarcoding” and offers a powerful molecular tool capable of noninvasively surveying species richness from many ecosystems. Here, we review the use ofeDNAmetabarcoding for surveying animal and plant richness, and the challenges in usingeDNAapproaches to estimate relative abundance. We highlighteDNAapplications in freshwater, marine and terrestrial environments, and in this broad context, we distill what is known about the ability of differenteDNAsample types to approximate richness in space and across time. We provide guiding questions for study design and discuss theeDNAmetabarcoding workflow with a focus on primers and library preparation methods. We additionally discuss important criteria for consideration of bioinformatic filtering of data sets, with recommendations for increasing transparency. Finally, looking to the future, we discuss emerging applications ofeDNAmetabarcoding in ecology, conservation, invasion biology, biomonitoring, and howeDNAmetabarcoding can empower citizen science and biodiversity education.

    more » « less
  3. These data represent the diet composition of small pelagic fishes assessed by the Northeast U.S. Shelf Long-Term Ecological Research (NES-LTER) project. The six species of fish in this dataset represent a subset of the species collected in bottom trawls conducted by the NOAA Fisheries Northeast Ecosystems Surveys from Cape Hatteras to the Gulf of Maine. Sampling occurred in the Spring and Fall seasons. Fish were frozen and stomach content analyses were conducted by the Fisheries Oceanography and Larval Fish Ecology Lab at the Woods Hole Oceanographic Institution. Data are counts and length measurements for prey items examined under a dissecting microscope. Prey species were matched to the lowest taxonomic level in the Integrated Taxonomic Information System (ITIS) for scientific name and taxonomic serial number. The dataset was supplemented with geospatial and temporal information from NOAA Fisheries trawl databases. 
    more » « less
  4. The use of environmental DNA (eDNA) to assess aquatic biodiversity is a growing field with great potential for monitoring and managing threatened species, like freshwater mussel (Unionidae) populations. Freshwater mussels are globally imperiled and serve essential roles in aquatic systems as a food source and as a natural water filter making their management essential for ecosystem health. Unfortunately, mussel populations are often understudied, and challenges exist to accurately and efficiently describe the full suite of species present. Multispecies eDNA approaches may also be more challenging where freshwater mussel populations are most diverse due to ongoing and significant taxonomic restructuring that has been further complicated by molecular phylogenies using mitochondrial genes. For this study, we developed a microfluidic metabarcoding array that targets a wide range of species, from invertebrates to fishes, with an emphasis on detecting unionid mussels known to be present in the Sipsey River, Alabama. We compared mussel species diversity across six sites with well-studied mussel assemblages using eDNA surveys and traditional quadrat surveys in 2016. We examined how factors such as mussel population density, biomass and location in the river substrate impacted our ability to detect certain species; and investigated unexpected eDNA detections through phylogenetic analysis. Our eDNA results for fish and mussel species were broadly consistent with the data from traditional electrofishing and quadrat-based field surveys, although both community eDNA and conventional sampling detected species unique to that method. Our phylogenetic analysis agreed with other studies that treat Pleurobema decisum and P. chattanoogaense as synonymous species; however, they are still listed as unique species in molecular databases which complicates their identity in a metabarcoding assay. We also found that Fusconaia flava and F. cerina are indistinguishable from one another using a portion of the NADH dehydrogenase Subunit 1 (ND1) marker, which may warrant further investigation into whether or not they are synonymous. Our results show that many factors impacted our ability to detect and correctly identify Unionidae mussel species. Here we describe the obstacles we faced, including the murky phylogeny of Unionidae mussels and turbid river conditions, and our development of a potentially impactful freshwater mussel monitoring eDNA assay. 
    more » « less
  5. Gorokhova, Elena (Ed.)

    Environmental DNA (eDNA) is an increasingly useful method for detecting pelagic animals in the ocean but typically requires large water volumes to sample diverse assemblages. Ship-based pelagic sampling programs that could implement eDNA methods generally have restrictive water budgets. Studies that quantify how eDNA methods perform on low water volumes in the ocean are limited, especially in deep-sea habitats with low animal biomass and poorly described species assemblages. Using 12S rRNA and COI gene primers, we quantified assemblages comprised of micronekton, coastal forage fishes, and zooplankton from low volume eDNA seawater samples (n = 436, 380–1800 mL) collected at depths of 0–2200 m in the southern California Current. We compared diversity in eDNA samples to concurrently collected pelagic trawl samples (n = 27), detecting a higher diversity of vertebrate and invertebrate groups in the eDNA samples. Differences in assemblage composition could be explained by variability in size-selectivity among methods and DNA primer suitability across taxonomic groups. The number of reads and amplicon sequences variants (ASVs) did not vary substantially among shallow (<200 m) and deep samples (>600 m), but the proportion of invertebrate ASVs that could be assigned a species-level identification decreased with sampling depth. Using hierarchical clustering, we resolved horizontal and vertical variability in marine animal assemblages from samples characterized by a relatively low diversity of ecologically important species. Low volume eDNA samples will quantify greater taxonomic diversity as reference libraries, especially for deep-dwelling invertebrate species, continue to expand.

    more » « less