skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: The Lasting Legacy of Megaflood Boulder Deposition in Mountain Rivers
Abstract

Infrequent, large‐magnitude discharge (>106 m3/s) outburst floods—megafloods—can play a major role in landscape evolution. Prehistoric glacial lake outburst megafloods transported and deposited large boulders (≥4 m), yet few studies consider their potential lasting impact on river processes and form. We use a numerical model, constrained by observed boulder size distributions, to investigate the fluvial response to boulder deposition by megaflooding in the Yarlung‐Siang River, eastern Himalaya. Results show that boulder deposition changes local channel steepness (ksn) up to ∼180% compared to simulations without boulder bars, introducing >100 meter‐scale knickpoints to the channel that can be sustained for >20 kyr. Simulations demonstrate that deposition of boulders in a single megaflood can have a greater influence onksnthan another common source of fluvial boulders: incision‐rate‐dependent delivery of boulders from hillslopes. Through widespread boulder deposition, megafloods leave a lasting legacy of channel disequilibrium that compounds over multiple floods and persists for millennia.

 
more » « less
Award ID(s):
2220336 2220337
NSF-PAR ID:
10482524
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
51
Issue:
1
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Profound effects of episodic megafloods (≥106 m3/s) have been observed on Earth and Mars. Quaternary megafloods sourced from valley‐blocking glaciers on the Tibetan Plateau likely play an important role in the geomorphic evolution of the Yarlung‐Tsangpo Gorge and mountain landscape of the eastern Himalaya. We use the first 2D numerical simulation of a megaflood sourced from a reconstructed 81 km3Tibetan lake to analyze flood hydraulics and examine the erosional and depositional potential of megafloods in mountain landscapes. The simulated flood has a duration >60 hr and a peak discharge of 3.1 × 106 m3/s. We find that the extent of inundated features like terraces, narrow valley sections, tight meander bends, and overtopped ridges influences locations of observed maximum depth (370 m), speed (76 m/s), and bed shear stress (>100 kPa), creating dynamic patterns of erosive potential. Consequently, it is difficult to predict local (≤1 km) patterns of megaflood erosional potential from either unit stream power or flood power from smaller magnitude outburst floods. However, both are useful when predicting regional (≥25 km) order‐of‐magnitude shifts in megaflood flood power. Portions of the flood domain downstream of the Gorge experience lower bed shear stresses and flood power <5 kW/m2, indicating potential for significant deposition. We suggest widespread deposition of boulders within the modern channel and fine‐grained particles on hillslopes during a megaflood likely impedes subsequent erosion and affects channel width and longitudinal form throughout the flood pathway. Our findings show the legacy of megaflooding in mountainous terrain includes both extensive erosion and deposition.

     
    more » « less
  2. Abstract

    Catastrophic drainage of glacial Lake Missoula through the Columbia River Gorge, USA, produced some of the largest floods ever known. However, erosion of the gorge during flooding has not been quantified, hindering discharge reconstructions and our understanding of landscape change by megafloods. Using a neural network and geomorphic observations, we reconstructed the gorge topography and found ∼7.4 km3of rock was eroded from gorge walls. Accounting for a narrower canyon and matching flood high‐water marks resulted in peak‐flood discharge reconstructions of 6 × 106–7 × 106 m3 s−1, which are 30%–40% lower than prior estimates based on the present‐day topography. Sediment transport modeling indicated that more frequent intermediate‐sized floods transported most of the eroded rock. Thus, similar to alluvial rivers, discharge magnitude‐frequency tradeoffs may also govern canyon formation by repeated megafloods.

     
    more » « less
  3. In the mid-ninth century, an earthquake triggered a landslide that blocked the narrow gorge of the Jhelum River where it exits the Kashmir Valley. The landslide impounded a lake that extended ≈100 km along the floor of the valley, implying an impounded volume of ≤21 km 3 , flooding the capital, Srinagar, and much agricultural land. An engineered breach of the landslide was contrived by a Medieval engineer resulting in the catastrophic release of flood waters. Using reasonable assumptions we calculate the probable minimum drainage time of this Medieval flood (<4 days) and maximum downstream surge velocities (≈12 m/s). These would have been sufficient to transport boulders in the bed of the Jhelum with dimensions of ≈6 m, consistent with those currently present in some reaches of the river. Given the morphology of the Jhelum gorge we consider that landslide outburst floods may have been common in Kashmir’s history. Ancient shorelines indicate that paleo-lake volumes in the Kashmir Valley may have exceeded 400 km 3 which, were they released in catastrophic floods, would have been associated with potential downstream outburst velocities >32 m/s, able to transport boulders with dimensions ≈40 m, far in excess of any found in the course of the Jhelum or in the Punjab plains. Their absence suggests that Kashmir’s ancient lakes were not lowered by outburst mechanisms much exceeding those associated with Suyya’s flood. Present-day floods have been many tens of meters shallower than those impounded by landslides in the Jhelum in the past several thousands of years. A challenge for future study will be to date Kashmir’s ancient shorelines to learn how often landslides and major impoundment events may have occurred in the valley. 
    more » « less
  4. Abstract. To explore the sensitivity of rivers to blocking from landslidedebris, we exploit two similar geomorphic settings in California'sFranciscan mélange where slow-moving landslides, often referred to asearthflows, impinge on river channels with drainage areas that differ by afactor of 30. Analysis of valley widths and river long profiles over∼19 km of Alameda Creek (185 km2 drainage area) andArroyo Hondo (200 km2 drainage area) in central California shows avery consistent picture in which earthflows that intersect these channelsforce tens of meters of gravel aggradation for kilometers upstream, leadingto apparently long-lived sediment storage and channel burial at these sites.In contrast, over a ∼30 km section of the Eel River (5547 km2 drainage area), there are no knickpoints or aggradation upstreamof locations where earthflows impinge on its channel. Hydraulic andhydrologic data from United States Geological Survey (USGS) gages on Arroyo Hondo and the Eel River, combinedwith measured size distributions of boulders input by landslides for bothlocations, suggest that landslide derived boulders are not mobile at eithersite during the largest floods (>2-year recurrence) with field-measured flow depths. We therefore argue that boulder transport capacity isan unlikely explanation for the observed difference in sensitivity tolandslide inputs. At the same time, we find that earthflow fluxes per unitchannel width are nearly identical for Oak Ridge earthflow on Arroyo Hondo,where evidence for blocking is clear, and for the Boulder Creek earthflow onthe Eel River, where evidence for blocking is absent. These observationssuggest that boulder supply is also an unlikely explanation for the observedmorphological differences along the two rivers. Instead, we argue that thedramatically different sensitivity of the two locations to landslideblocking is related to differences in channel width relative to typicalseasonal displacements of earthflows. A synthesis of seasonal earthflowdisplacements in the Franciscan mélange shows that the channel width ofthe Eel River is ∼5 times larger than the largest annualseasonal displacement. In contrast, during wet winters, earthflows arecapable of crossing the entire channel width of Arroyo Hondo and AlamedaCreek. In support of this interpretation, satellite imagery shows thatimmobile earthflow-derived boulders are generally confined to the edges ofthe channel on the Eel River. By contrast, immobile earthflow-derivedboulders jam the entire channel on Arroyo Hondo. Our results imply that lower drainage area reaches of earthflow-dominated catchments may be particularly prone to blocking. By inhibiting the upstreampropagation of base-level signals, valley-blocking earthflows may thereforepromote the formation of so-called “relict topography”. 
    more » « less
  5. Abstract

    We perform a comprehensive search for optical precursor emission at the position of SN 2023ixf using data from the DLT40, ZTF, and ATLAS surveys. By comparing the current data set with precursor outburst hydrodynamical model light curves, we find that the probability of a significant outburst within 5 yr of explosion is low, and the circumstellar material (CSM) ejected during any possible precursor outburst is likely smaller than ∼0.015M. By comparing to a set of toy models, we find that, if there was a precursor outburst, the duration must have been shorter than ∼100 days for a typical brightness ofMr≃ −9 mag or shorter than 200 days forMr≃ −8 mag; brighter, longer outbursts would have been discovered. Precursor activity like that observed in the normal Type II SN 2020tlf (Mr≃ −11.5) can be excluded in SN 2023ixf. If the dense CSM inferred by early flash spectroscopy and other studies is related to one or more precursor outbursts, then our observations indicate that any such outburst would have to be faint and only last for days to months, or it occurred more than 5 yr prior to the explosion. Alternatively, any dense, confined CSM may not be due to eruptive mass loss from a single red supergiant progenitor. Taken together, the results of SN 2023ixf and SN 2020tlf indicate that there may be more than one physical mechanism behind the dense CSM inferred around some normal Type II supernovae.

     
    more » « less