skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Diffusion control in biochemical specificity
Biochemical specificity is critical in enzyme function, evolution, and engineering. Here we employ an established kinetic model to dissect the effects of reactant geometry and diffusion on product formation speed and accuracy in the presence of cognate (correct) and near-cognate (incorrect) substrates. Using this steady-state model for spherical geometries, we find that, for distinct kinetic regimes, the speed and accuracy of the reactions are optimized on different regions of the geometric landscape. From this model we deduce that accuracy can be strongly dependent on reactant geometric properties even for chemically limited reactions. Notably, substrates with a specific geometry and reactivity can be discriminated by the enzyme with higher efficacy than others through purely diffusive effects. For similar cognate and near-cognate substrate geometries (as is the case for polymerases or the ribosome), we observe that speed and accuracy are maximized in opposing regions of the geometric landscape. We also show that, in relevant environments, diffusive effects on accuracy can be substantial even far from extreme kinetic conditions. Finally, we find how reactant chemical discrimination and diffusion can be related to simultaneously optimize steady-state flux and accuracy. These results highlight how diffusion and geometry can be employed to enhance reaction speed and discrimination, and similarly how they impose fundamental restraints on these quantities.  more » « less
Award ID(s):
1840301
PAR ID:
10482595
Author(s) / Creator(s):
; ;
Publisher / Repository:
Biophysical Journal
Date Published:
Journal Name:
Biophysical Journal
Volume:
121
Issue:
8
ISSN:
0006-3495
Page Range / eLocation ID:
1541 to 1548
Subject(s) / Keyword(s):
kinetic modeling diffusion control biochemical specificity computational modeling of cell biology
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many biological processes discriminate between correct and incorrect substrates through the kinetic proofreading mechanism that enables lower error at the cost of higher energy dissipation. Elucidating physico-chemical constraints for global minimization of dissipation and error is important for understanding enzyme evolution. Here, we identify theoretically a fundamental error–cost bound that tightly constrains the performance of proofreading networks under any parameter variations preserving the rate discrimination between substrates. The bound is kinetically controlled, i.e. completely determined by the difference between the transition state energies on the underlying free energy landscape. The importance of the bound is analysed for three biological processes. DNA replication by T7 DNA polymerase is shown to be nearly optimized, i.e. its kinetic parameters place it in the immediate proximity of the error–cost bound. The isoleucyl-tRNA synthetase (IleRS) of E. coli also operates close to the bound, but further optimization is prevented by the need for reaction speed. In contrast, E. coli ribosome operates in a high-dissipation regime, potentially in order to speed up protein production. Together, these findings establish a fundamental error–dissipation relation in biological proofreading networks and provide a theoretical framework for studying error–dissipation trade-off in other systems with biological discrimination. 
    more » « less
  2. null (Ed.)
    The critical role of energy consumption in biological systems including T cell discrimination process has been investigated in various ways. The kinetic proofreading (KPR) in T cell recognition involving different levels of energy dissipation influences functional outcomes such as error rates and specificity. In this work, we study quantitatively how the energy cost influences error fractions, sensitivity, specificity, kinetic speed in terms of Mean First Passage Time (MFPT) and adaption errors. These provide the background to adequately understand T cell dynamics. It is found that energy plays a central role in the system that aims to achieve minimum error fractions and maximum sensitivity and specificity with the fastest speed under our kinetic scheme for which numerical values of kinetic parameters are specially chosen, but such a condition can be broken with varying data. Starting with the application of steady state approximation (SSA) to the evaluation of the concentration of each complex produced associated with KPR, which is used to quantify various observables, we present both analytical and numerical results in detail. 
    more » « less
  3. Abstract To understand the entry of the cool low‐latitude mantle ions into the tail plasma sheet near the flanks under persistent interplanetary magnetic field By, we evaluate the role of the cross‐field diffusive transport by kinetic Alfvén waves (KAWs) by investigating two events observed by multiscale (MMS) spacecraft. Around the separatrix between the open and closed field‐line regions, a two‐component mixing of hot plasma sheet ions of a few keV with cool mantle ions of a few hundred eV was observed, indicating transport across the separatrix. The waves observed between 0.01 and 10 Hz around the separatrix had characteristics consistent with those of KAWs. The consistency allowed us to estimate the wave vectors as a function of frequency by fitting KAW dispersion to the observations. Using the observed wave powers, plasma moments, and the estimated wave vectors, we computed the cross‐field diffusion rates associated with KAWs. The diffusion rates were found to be comparable to or larger than the Bohm diffusion rates during the intervals when the two‐component mixing was observed, indicating that the KAW diffusive transport can play a role in the entry of low‐latitude mantle ions into the plasma sheet. 
    more » « less
  4. In this work, angle strain in a geminally substituted alkene reactant enabled ene–yne metathesis reactions of a wide alkyne and alkene substrate scope. Methylene cyclobutanes and methylene azetidines served as the angle-strained alkene reactants, and both terminal and internal alkynes were found to react. Angle strain results from geometric distortion by the four-membered ring away from the idealized trigonal planar geometry of the sp2 hybridized carbon atom. Highly atom economical ene–yne metathesis reactions were developed using 1:1 reactant stoichiometry and 1 mol % of a Grubbs-type catalyst in most cases. Complete atom economy describes the rare case when all of the atoms of reactants go into the products without any waste, which is an important metric for efficiency and sustainability in organic reactions. In these catalytic reactions, angle strain in the alkene reactant is still present in the 1,3-diene products; therefore, angle strain is not lost in the ene–yne metathesis. The presence of angle strain in 1,3-diene facilitates secondary metathesis and cycloaddition reactions of the 1,3-diene products, showing an activating effect on these subsequent reactions. To better understand how strain facilitates the catalytic reaction, DFT calculations were performed. A cyclic, strained alkene reactant was compared with an acyclic, unstrained reactant to pinpoint the key energetic differences. These studies showed that angle strain enabled an alkene-first initiation step and lowered the activation energy of the alkyne insertion step in the ene–yne metathesis catalytic cycle. A further study in a model system showed that angle strain raised the energy of the reactants and had a less destabilizing effect on key reactive intermediates as well as the cycloaddition and cycloreversion transition states. 
    more » « less
  5. Abstract Mitochondrial malate dehydrogenase (MDH)-citrate synthase (CS) multi-enzyme complex is a part of the Krebs tricarboxylic acid (TCA) cycle ‘metabolon’ which is enzyme machinery catalyzing sequential reactions without diffusion of reaction intermediates into a bulk matrix. This complex is assumed to be a dynamic structure involved in the regulation of the cycle by enhancing metabolic flux. Microscale Thermophoresis analysis of the porcine heart MDH-CS complex revealed that substrates of the MDH and CS reactions, NAD+and acetyl-CoA, enhance complex association while products of the reactions, NADH and citrate, weaken the affinity of the complex. Oxaloacetate enhanced the interaction only when it was present together with acetyl-CoA. Structural modeling using published CS structures suggested that the binding of these substrates can stabilize the closed format of CS which favors the MDH-CS association. Two other TCA cycle intermediates, ATP, and low pH also enhanced the association of the complex. These results suggest that dynamic formation of the MDH-CS multi-enzyme complex is modulated by metabolic factors responding to respiratory metabolism, and it may function in the feedback regulation of the cycle and adjacent metabolic pathways. 
    more » « less