skip to main content


Title: Predation shifts coevolution toward higher host contact rate and parasite virulence

Hosts can avoid parasites (and pathogens) by reducing social contact, but such isolation may carry costs, e.g. increased vulnerability to predators. Thus, many predator–host–parasite systems confront hosts with a trade-off between predation and parasitism. Parasites, meanwhile, evolve higher virulence in response to increased host sociality and consequently, increased multiple infections. How does predation shift coevolution of host behaviour and parasite virulence? What if predators are selective, i.e. predators disproportionately capture the sickest hosts? We answer these questions with an eco-coevolutionary model parametrized for a Trinidadian guppy–Gyrodactylusspp. system. Here, increased predation drives host coevolution of higher grouping, which selects for higher virulence. Additionally, higher predator selectivity drives the contact rate higher and virulence lower. Finally, we show how predation and selectivity can have very different impacts on host density and prevalence depending on whether hosts or parasites evolve, or both. For example, higher predator selectivity led to lower prevalence with no evolution or only parasite evolution but higher prevalence with host evolution or coevolution. These findings inform our understanding of diverse systems in which host behavioural responses to predation may lead to increased prevalence and virulence of parasites.

 
more » « less
Award ID(s):
2010826
NSF-PAR ID:
10482603
Author(s) / Creator(s):
;
Publisher / Repository:
The Royal Society
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
289
Issue:
1978
ISSN:
0962-8452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Virulence, the degree to which a pathogen harms its host, is an important but poorly understood aspect of host-pathogen interactions. Virulence is not static, instead depending on ecological context and potentially evolving rapidly. For instance, at the start of an epidemic, when susceptible hosts are plentiful, pathogens may evolve increased virulence if this maximizes their intrinsic growth rate. However, if host density declines during an epidemic, theory predicts evolution of reduced virulence. Although well-studied theoretically, there is still little empirical evidence for virulence evolution in epidemics, especially in natural settings with native host and pathogen species. Here, we used a combination of field observations and lab assays in theDaphnia-Pasteuriamodel system to look for evidence of virulence evolution in nature. We monitored a large, naturally occurring outbreak ofPasteuria ramosainDaphnia dentifera, where infection prevalence peaked at ~ 40% of the population infected and host density declined precipitously during the outbreak. In controlled infections in the lab, lifespan and reproduction of infected hosts was lower than that of unexposed control hosts and of hosts that were exposed but not infected. We did not detect any significant changes in host resistance or parasite infectivity, nor did we find evidence for shifts in parasite virulence (quantified by host lifespan and number of clutches produced by hosts). However, over the epidemic, the parasite evolved to produce significantly fewer spores in infected hosts. While this finding was unexpected, it might reflect previously quantified tradeoffs: parasites in high mortality (e.g., high predation) environments shift from vegetative growth to spore production sooner in infections, reducing spore yield. Future studies that track evolution of parasite spore yield in more populations, and that link those changes with genetic changes and with predation rates, will yield better insight into the drivers of parasite evolution in the wild.

     
    more » « less
  2. Parasites exploit hosts to replicate and transmit, but overexploitation kills both host and parasite. Predators may shift this cost–benefit balance by consuming infected hosts or changing host behaviour, but the strength of these effects remains unclear. Here we use field and lab data on Trinidadian guppies and their Gyrodactylus spp. parasites to show how differential predation pressure influences parasite virulence and transmission. We use an experimentally demonstrated virulence–transmission trade-off to parametrize a mathematical model in which host shoaling (as a means of anti-predator defence), increases contact rates and selects for higher virulence. Then we validate model predictions by collecting parasites from wild, Trinidadian populations; parasites from high-predation populations were more virulent in common gardens than those from low-predation populations. Broadly, our results indicate that reduced social contact selects against parasite virulence. 
    more » « less
  3. Predators and parasites are critical, interconnected members of the community and have the potential to shape host populations. Predators, in particular, can have direct and indirect impacts on disease dynamics. By removing hosts and their parasites, predators alter both host and parasite populations and ultimately shape disease transmission. Selective predation of infected hosts has received considerable attention as it is recognized to have important ecological implications. The occurrence and consequences of preferential consumption of uninfected hosts, however, has rarely been considered. Here, we synthesize current evidence suggesting this strategy of selectively predating uninfected individuals is likely more common than previously anticipated and address how including this predation strategy can change our understanding of the ecology and evolution of disease dynamics. Selective predation strategies are expected to differentially impact ecological dynamics and therefore, consideration of both strategies is required to fully understand the impact of predation on prey and host densities. In addition, given that different strategies of prey selectivity by predators change the fitness payoffs both for hosts and their parasites, we predict amplified coevolutionary rates under selective predation of infected hosts compared to uninfected hosts. Using recent work highlighting the critical role that predators play in disease dynamics, we provide insights into the potential mechanisms by which selective predation on healthy individuals can directly affect ecological outcomes and impact long‐term host–parasite coevolution. We contrast the consequences of both scenarios of selective predation while identifying current gaps in the literature and future research directions. 
    more » « less
  4. Abstract

    Predation on parasites is a common interaction with multiple, concurrent outcomes. Free‐living stages of parasites can comprise a large portion of some predators' diets and may be important resources for population growth. Predation can also reduce the density of infectious agents in an ecosystem, with resultant decreases in infection rates. While predator–parasite interactions likely vary with parasite transmission strategy, few studies have examined how variation in transmission mode influences contact rates with predators and the associated changes in consumption risk.

    To understand how transmission mode mediates predator–parasite interactions, we examined associations between an oligochaete predatorChaetogaster limnaeithat lives commensally on freshwater snails and nine trematode taxa that infect snails.Chaetogasteris hypothesized to consume active (i.e. mobile), free‐living stages of trematodes that infect snails (miracidia), but not the passive infectious stages (eggs); it could thus differentially affect transmission and infection prevalence of parasites, including those with medical or veterinary importance. Alternatively, when infection does occur,Chaetogastercan consume and respond numerically to free‐living trematode stages released from infected snails (cercariae). These two processes lead to contrasting predictions about whetherChaetogasterand trematode infection of snails correlate negatively (‘protective predation’) or positively (‘predator augmentation’).

    Here, we tested how parasite transmission mode affectedChaetogaster–trematode relationships using data from 20,759 snails collected across 4 years from natural ponds in California. Based on generalized linear mixed modelling, snails with moreChaetogasterwere less likely to be infected by trematodes that rely on active transmission. Conversely, infections by trematodes with passive infectious stages were positively associated with per‐snailChaetogasterabundance.

    Our results suggest that trematode transmission mode mediates the net outcome of predation on parasites. For trematodes with active infectious stages, predatoryChaetogasterlimited the risk of snail infection and its subsequent pathology (i.e. castration). For taxa with passive infectious stages, no such protective effect was observed. Rather, infected snails were associated with higherChaetogasterabundance, likely owing to the resource subsidy provided by cercariae. These findings highlight the ecological and epidemiological importance of predation on free‐living stages while underscoring the influence of parasite life history in shaping such interactions.

     
    more » « less
  5. Abstract

    Predators can strongly influence disease transmission and evolution, particularly when they prey selectively on infected hosts. Although selective predation has been observed in numerous systems, why predators select infected prey remains poorly understood. Here, we use a mathematical model of predator vision to test a long‐standing hypothesis about the mechanistic basis of selective predation in aDaphnia–microparasite system, which serves as a model for the ecology and evolution of infectious diseases. Bluegill sunfish feed selectively onDaphniainfected by a variety of parasites, particularly in water uncolored by dissolved organic carbon. The leading hypothesis for selective predation in this system is that infection‐induced changes in the transparency ofDaphniarender them more visible to bluegill. Rigorously evaluating this hypothesis requires that we quantify the effect of infection on the visibility of prey from the predator's perspective, rather than our own. Using a model of the bluegill visual system, we show that three common parasites,Metschnikowia bicuspidata,Pasteuria ramosa, andSpirobacillus cienkowskii, decrease the transparency ofDaphnia, rendering infectedDaphniadarker against a background of bright downwelling light. As a result of this increased brightness contrast, bluegill can see infectedDaphniaat greater distances than uninfectedDaphnia—between 19% and 33% further, depending on the parasite.PasteuriaandSpirobacillusalso increase the chromatic contrast ofDaphnia. These findings lend support to the hypothesis that selective predation by fish on infectedDaphniacould result from the effects of infection onDaphnia's visibility. However, contrary to expectations, the visibility ofDaphniawas not strongly impacted by water color in our model. Our work demonstrates that models of animal visual systems can be useful in understanding ecological interactions that impact disease transmission.

     
    more » « less