Parasites exploit hosts to replicate and transmit, but overexploitation kills both host and parasite. Predators may shift this cost–benefit balance by consuming infected hosts or changing host behaviour, but the strength of these effects remains unclear. Here we use field and lab data on Trinidadian guppies and their Gyrodactylus spp. parasites to show how differential predation pressure influences parasite virulence and transmission. We use an experimentally demonstrated virulence–transmission trade-off to parametrize a mathematical model in which host shoaling (as a means of anti-predator defence), increases contact rates and selects for higher virulence. Then we validate model predictions by collecting parasites from wild, Trinidadian populations; parasites from high-predation populations were more virulent in common gardens than those from low-predation populations. Broadly, our results indicate that reduced social contact selects against parasite virulence.
more »
« less
Predation shifts coevolution toward higher host contact rate and parasite virulence
Hosts can avoid parasites (and pathogens) by reducing social contact, but such isolation may carry costs, e.g. increased vulnerability to predators. Thus, many predator–host–parasite systems confront hosts with a trade-off between predation and parasitism. Parasites, meanwhile, evolve higher virulence in response to increased host sociality and consequently, increased multiple infections. How does predation shift coevolution of host behaviour and parasite virulence? What if predators are selective, i.e. predators disproportionately capture the sickest hosts? We answer these questions with an eco-coevolutionary model parametrized for a Trinidadian guppy–Gyrodactylusspp. system. Here, increased predation drives host coevolution of higher grouping, which selects for higher virulence. Additionally, higher predator selectivity drives the contact rate higher and virulence lower. Finally, we show how predation and selectivity can have very different impacts on host density and prevalence depending on whether hosts or parasites evolve, or both. For example, higher predator selectivity led to lower prevalence with no evolution or only parasite evolution but higher prevalence with host evolution or coevolution. These findings inform our understanding of diverse systems in which host behavioural responses to predation may lead to increased prevalence and virulence of parasites.
more »
« less
- Award ID(s):
- 2010826
- PAR ID:
- 10482603
- Publisher / Repository:
- The Royal Society
- Date Published:
- Journal Name:
- Proceedings of the Royal Society B: Biological Sciences
- Volume:
- 289
- Issue:
- 1978
- ISSN:
- 0962-8452
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Virulence, the degree to which a pathogen harms its host, is an important but poorly understood aspect of host-pathogen interactions. Virulence is not static, instead depending on ecological context and potentially evolving rapidly. For instance, at the start of an epidemic, when susceptible hosts are plentiful, pathogens may evolve increased virulence if this maximizes their intrinsic growth rate. However, if host density declines during an epidemic, theory predicts evolution of reduced virulence. Although well-studied theoretically, there is still little empirical evidence for virulence evolution in epidemics, especially in natural settings with native host and pathogen species. Here, we used a combination of field observations and lab assays in theDaphnia-Pasteuriamodel system to look for evidence of virulence evolution in nature. We monitored a large, naturally occurring outbreak ofPasteuria ramosainDaphnia dentifera, where infection prevalence peaked at ~ 40% of the population infected and host density declined precipitously during the outbreak. In controlled infections in the lab, lifespan and reproduction of infected hosts was lower than that of unexposed control hosts and of hosts that were exposed but not infected. We did not detect any significant changes in host resistance or parasite infectivity, nor did we find evidence for shifts in parasite virulence (quantified by host lifespan and number of clutches produced by hosts). However, over the epidemic, the parasite evolved to produce significantly fewer spores in infected hosts. While this finding was unexpected, it might reflect previously quantified tradeoffs: parasites in high mortality (e.g., high predation) environments shift from vegetative growth to spore production sooner in infections, reducing spore yield. Future studies that track evolution of parasite spore yield in more populations, and that link those changes with genetic changes and with predation rates, will yield better insight into the drivers of parasite evolution in the wild.more » « less
-
ABSTRACT Predation can alter diverse ecological processes, including host–parasite interactions. Selective predation, whereby predators preferentially feed on certain prey types, can affect prey density and selective pressures. Studies on selective predation in infected populations have primarily focused on predators preferentially feeding on infected prey. However, there is substantial evidence that some predators preferentially consume uninfected individuals. Such different strategies of prey selectivity likely modulate host–parasite interactions, changing the fitness payoffs both for hosts and their parasites. Here we investigated the effects of different types of selective predation on infection dynamics and host evolution. We used a host–parasite system in the laboratory (Daphnia dentifera infected with the horizontally transmitted fungus,Metschnikowia bicuspidata) to artificially manipulate selective predation by removing infected, uninfected, or randomly selected prey over approximately 8–9 overlapping generations. We collected weekly data on population demographics and host infection and measured susceptibility from a subset of the remaining hosts in each population at the end of the experiment. After 6 weeks of selective predation pressure, we found no differences in host abundance or infection prevalence across predation treatments. Counterintuitively, populations with selective predation on infected individuals had a higher abundance of infected individuals than populations where either uninfected or randomly selected individuals were removed. Additionally, populations with selective predation for uninfected individuals had a higher proportion of individuals infected after a standardized exposure to the parasite than individuals from the two other predation treatments. These results suggest that selective predation can alter the abundance of infected hosts and host evolution.more » « less
-
Predators and parasites are critical, interconnected members of the community and have the potential to shape host populations. Predators, in particular, can have direct and indirect impacts on disease dynamics. By removing hosts and their parasites, predators alter both host and parasite populations and ultimately shape disease transmission. Selective predation of infected hosts has received considerable attention as it is recognized to have important ecological implications. The occurrence and consequences of preferential consumption of uninfected hosts, however, has rarely been considered. Here, we synthesize current evidence suggesting this strategy of selectively predating uninfected individuals is likely more common than previously anticipated and address how including this predation strategy can change our understanding of the ecology and evolution of disease dynamics. Selective predation strategies are expected to differentially impact ecological dynamics and therefore, consideration of both strategies is required to fully understand the impact of predation on prey and host densities. In addition, given that different strategies of prey selectivity by predators change the fitness payoffs both for hosts and their parasites, we predict amplified coevolutionary rates under selective predation of infected hosts compared to uninfected hosts. Using recent work highlighting the critical role that predators play in disease dynamics, we provide insights into the potential mechanisms by which selective predation on healthy individuals can directly affect ecological outcomes and impact long‐term host–parasite coevolution. We contrast the consequences of both scenarios of selective predation while identifying current gaps in the literature and future research directions.more » « less
-
null (Ed.)Research on the ‘ecology of fear’ posits that defensive prey responses to avoid predation can cause non-lethal effects across ecological scales. Parasites also elicit defensive responses in hosts with associated non-lethal effects, which raises the longstanding, yet unresolved question of how non-lethal effects of parasites compare with those of predators. We developed a framework for systematically answering this question for all types of predator–prey and host–parasite systems. Our framework reveals likely differences in non-lethal effects not only between predators and parasites, but also between different types of predators and parasites. Trait responses should be strongest towards predators, parasitoids and parasitic castrators, but more numerous and perhaps more frequent for parasites than for predators. In a case study of larval amphibians, whose trait responses to both predators and parasites have been relatively well studied, existing data indicate that individuals generally respond more strongly and proactively to short-term predation risks than to parasitism. Apart from studies using amphibians, there have been few direct comparisons of responses to predation and parasitism, and none have incorporated responses to micropredators, parasitoids or parasitic castrators, or examined their long-term consequences. Addressing these and other data gaps highlighted by our framework can advance the field towards understanding how non-lethal effects impact prey/host population dynamics and shape food webs that contain multiple predator and parasite species.more » « less
An official website of the United States government

