skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: IGNITE: A Minimax Game Toward Learning Individual Treatment Effects from Networked Observational Data
Networked observational data presents new opportunities for learning individual causal effects, which plays an indispensable role in decision making. Such data poses the challenge of confounding bias. Previous work presents two desiderata to handle confounding bias. On the treatment group level, we aim to balance the distributions of confounder representations. On the individual level, it is desirable to capture patterns of hidden confounders that predict treatment assignments. Existing methods show the potential of utilizing network information to handle confounding bias, but they only try to satisfy one of the two desiderata. This is because the two desiderata seem to contradict each other. When the two distributions of confounder representations are highly overlapped, then we confront the undiscriminating problem between the treated and the controlled. In this work, we formulate the two desiderata as a minimax game. We propose IGNITE that learns representations of confounders from networked observational data, which is trained by a minimax game to achieve the two desiderata. Experiments verify the efficacy of IGNITE on two datasets under various settings.  more » « less
Award ID(s):
1633381
PAR ID:
10482631
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
International Joint Conferences on Artificial Intelligence Organization
Date Published:
Journal Name:
Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence
ISBN:
978-0-9992411-6-5
Page Range / eLocation ID:
4534 to 4540
Format(s):
Medium: X
Location:
Yokohama, Japan
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    One fundamental problem in causal inference is to learn the individual treatment effects (ITE) -- assessing the causal effects of a certain treatment (e.g., prescription of medicine) on an important outcome (e.g., cure of a disease) for each data instance, but the effectiveness of most existing methods is often limited due to the existence of hidden confounders. Recent studies have shown that the auxiliary relational information among data can be utilized to mitigate the confounding bias. However, these works assume that the observational data and the relations among them are static, while in reality, both of them will continuously evolve over time and we refer such data as time-evolving networked observational data. In this paper, we make an initial investigation of ITE estimation on such data. The problem remains difficult due to the following challenges: (1) modeling the evolution patterns of time-evolving networked observational data; (2) controlling the hidden confounders with current data and historical information; (3) alleviating the discrepancy between the control group and the treated group. To tackle these challenges, we propose a novel ITE estimation framework Dynamic Networked Observational Data Deconfounder (\mymodel) which aims to learn representations of hidden confounders over time by leveraging both current networked observational data and historical information. Additionally, a novel adversarial learning based representation balancing method is incorporated toward unbiased ITE estimation. Extensive experiments validate the superiority of our framework when measured against state-of-the-art baselines. The implementation can be accessed in https://github.com/jma712/DNDC https://github.com/jma712/DNDC. 
    more » « less
  2. Causal inference from observational data has attracted considerable attention among researchers. One main obstacle is the handling of confounders. As direct measurement of confounders may not be feasible, recent methods seek to address the confounding bias via proxy variables, i.e., covariates postulated to be conducive to the inference of latent confounders. However, the selected proxies may scramble both confounders and post-treatment variables in practice, which risks biasing the estimation by controlling for variables affected by the treatment. In this paper, we systematically investigate the bias due to latent post-treatment variables, i.e., latent post-treatment bias, in causal effect estimation. Specifically, we first derive the bias when selected proxies scramble both latent confounders and post-treatment variables, which we demonstrate can be arbitrarily bad. We then propose a Confounder-identifiable VAE (CiVAE) to address the bias. Based on a mild assumption that the prior of latent variables that generate the proxy belongs to a general exponential family with at least one invertible sufficient statistic in the factorized part, CiVAE individually identifies latent confounders and latent post-treatment variables up to bijective transformations. We then prove that with individual identification, the intractable disentanglement problem of latent confounders and post-treatment variables can be transformed into a tractable independence test problem despite arbitrary dependence may exist among them. Finally, we prove that the true causal effects can be unbiasedly estimated with transformed confounders inferred by CiVAE. Experiments on both simulated and real-world datasets demonstrate significantly improved robustness of CiVAE. 
    more » « less
  3. Abstract Propensity score weighting is a tool for causal inference to adjust for measured confounders in observational studies. In practice, data often present complex structures, such as clustering, which make propensity score modeling and estimation challenging. In addition, for clustered data, there may be unmeasured cluster-level covariates that are related to both the treatment assignment and outcome. When such unmeasured cluster-specific confounders exist and are omitted in the propensity score model, the subsequent propensity score adjustment may be biased. In this article, we propose a calibration technique for propensity score estimation under the latent ignorable treatment assignment mechanism, i. e., the treatment-outcome relationship is unconfounded given the observed covariates and the latent cluster-specific confounders. We impose novel balance constraints which imply exact balance of the observed confounders and the unobserved cluster-level confounders between the treatment groups. We show that the proposed calibrated propensity score weighting estimator is doubly robust in that it is consistent for the average treatment effect if either the propensity score model is correctly specified or the outcome follows a linear mixed effects model. Moreover, the proposed weighting method can be combined with sampling weights for an integrated solution to handle confounding and sampling designs for causal inference with clustered survey data. In simulation studies, we show that the proposed estimator is superior to other competitors. We estimate the effect of School Body Mass Index Screening on prevalence of overweight and obesity for elementary schools in Pennsylvania. 
    more » « less
  4. We study the problem of learning conditional average treatment effects (CATE) from observational data with unobserved confounders. The CATE function maps baseline covariates to individual causal effect predictions and is key for personalized assessments. Recent work has focused on how to learn CATE under unconfoundedness, i.e., when there are no unobserved confounders. Since CATE may not be identified when unconfoundedness is violated, we develop a functional interval estimator that predicts bounds on the individual causal effects under realistic violations of unconfoundedness. Our estimator takes the form of a weighted kernel estimator with weights that vary adversarially. We prove that our estimator is sharp in that it converges exactly to the tightest bounds possible on CATE when there may be unobserved confounders. Further, we study personalized decision rules derived from our estimator and prove that they achieve optimal minimax regret asymptotically. We assess our approach in a simulation study as well as demonstrate its application in the case of hormone replacement therapy by comparing conclusions from a real observational study and clinical trial. 
    more » « less
  5. This tutorial introduces the package sensemakr for R and Stata, which implements a suite of sensitivity analysis tools for regression models developed in Cinelli and Hazlett (2020, 2022). Given a regression model, sensemakr can compute sensitivity statistics for routine reporting, such as the robustness value , which describes the minimum strength that unobserved confounders need to have to overturn a research conclusion. The package also provides plotting tools that visually demonstrate the sensitivity of point estimates and t-values to hypothetical confounders. Finally, sensemakr implements formal bounds on sensitivity parameters by means of comparison with the explanatory power of observed variables. All these tools are based on the familiar omitted variable bias framework, do not require assumptions regarding the functional form of the treatment assignment mechanism nor the distribution of the unobserved confounders, and naturally handle multiple, non-linear confounders. With sensemakr, users can transparently report the sensitivity of their causal inferences to unobserved confounding, thereby enabling a more precise, quantitative debate as to what can be concluded from imperfect observational studies. 
    more » « less