Abstract. We compare primary productivity estimates based on different photosynthetic ‘currencies’ (electrons, O2 and carbon) collected from the dynamic coastal upwelling waters of the California Current. Fast Repetition Rate Fluorometry and O2/N2 measurements were used to collect high-resolution underway estimates of photosynthetic electron transport rates and net community productivity, respectively, alongside on-station 14C uptake experiments to measure gross carbon fixation rates. Our survey captured two upwelling filaments at Cape Blanco and Cape Mendocino with distinct biogeochemical signatures and iron availabilities, enabling us to examine photosynthetic processes along a natural iron gradient. Significant differences in photo-physiology, cell sizes, Si:NO3- draw-down ratios, and molecular markers of Fe-stress indicated that phytoplankton assemblages near Cape Mendocino were Fe-stressed, while those near Cape Blanco were Fe-replete. Upwelling of O2-poor deep water to the surface complicated O2-based net community productivity estimates, but we were able to correct for these vertical mixing effects using continuous [N2O] surface measurements and depth-profiles of ∂[O2]∂[N2O]. Vertical mixing corrections were strongly correlated to sea surface temperature, which serves as an N2O-independent proxy for upwelling. Following vertical mixing corrections, all three productivity estimates reflected trends in Fe-stress physiology, indicating greater productivity near Cape Blanco compared to Cape Mendocino. For all assemblages, carbon fixation varied as a hyperbolic function of electron transport rates, but the derived parameters of this relationship were highly variable and significantly correlated with physiological indicators of Fe-stress (σPSII, FV/FM, Si:NO3- and diatom-specific PSI gene expression), suggesting that iron availability influenced the coupling between photosynthetic electron transport and subsequent carbon fixation. Net community productivity showed strong coherence with daily-integrated photosynthetic electron transport rates across the entire cruise track, with no apparent relationship with Fe-stress. This result suggests that fluorescence-based estimates of gross photochemistry are still a good indicator for bulk primary productivity, even if Fe-limitation influences the stoichiometric relationship between productivity currencies.
more »
« less
Widespread use of proton-pumping rhodopsin in Antarctic phytoplankton
Photosynthetic carbon (C) fixation by phytoplankton in the Southern Ocean (SO) plays a critical role in regulating air–sea exchange of carbon dioxide and thus global climate. In the SO, photosynthesis (PS) is often constrained by low iron, low temperatures, and low but highly variable light intensities. Recently, proton-pumping rhodopsins (PPRs) were identified in marine phytoplankton, providing an alternate iron-free, light-driven source of cellular energy. These proteins pump protons across cellular membranes through light absorption by the chromophore retinal, and the resulting pH energy gradient can then be used for active membrane transport or for synthesis of adenosine triphosphate. Here, we show that PPR is pervasive in Antarctic phytoplankton, especially in iron-limited regions. In a model SO diatom, we found that it was localized to the vacuolar membrane, making the vacuole a putative alternative phototrophic organelle for light-driven production of cellular energy. Unlike photosynthetic C fixation, which decreases substantially at colder temperatures, the proton transport activity of PPR was unaffected by decreasing temperature. Cellular PPR levels in cultured SO diatoms increased with decreasing iron concentrations and energy production from PPR photochemistry could substantially augment that of PS, especially under high light intensities, where PS is often photoinhibited. PPR gene expression and high retinal concentrations in phytoplankton in SO waters support its widespread use in polar environments. PPRs are an important adaptation of SO phytoplankton to growth and survival in their cold, iron-limited, and variable light environment.
more »
« less
- PAR ID:
- 10482643
- Publisher / Repository:
- National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 120
- Issue:
- 39
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract High‐latitude oceans experience strong seasonality where low light limits photosynthetic activity most of the year. This limitation is pronounced for algae within and underlying sea ice, and these algae are uniquely acclimated to low light levels. During spring melt, however, light intensity and daylength increase drastically, triggering blooms of ice algae that play important roles in carbon cycling and ecosystem productivity. How the algae acclimate to this dynamic and heterogeneous environment is poorly understood. Here, we measured14C‐carbon fixation rates, photophysiology, and ribulose 1,5‐bisphosphate carboxylase oxygenase (Rubisco) content of sea‐ice algae in coastal waters near the western Antarctic Peninsula during spring, ranging from a low‐light‐acclimated, bottom community to a light‐saturated bloom. Carbon fixation rates by sea‐ice algae were similar to other Antarctic sea‐ice measurements (2–49 mg C m−2d−1), and there was little phytoplankton biomass in the underlying water at the time of sampling. Net‐to‐gross ratios of carbon fixation were generally high and showed no relationship with ice type. We found algal photophysiology and Rubisco concentrations varied in relation to the different types of ice, altering the balance between the photochemical and biochemical processes that constrain carbon fixation rates. For algae inhabiting the bottom layers of sea ice, rates of carbon fixation were largely constrained by light availability whereas in surface seawater, interior and rotten/brash ice, carbon fixation rates could be calculated with reasonable accuracy from measurements of Rubisco concentrations. This work provides additional insight and means to evaluate carbon fixation rates as sea ice continues to change in future.more » « less
-
Information on the intracellular content and functional diversity of phytoplankton pigments can provide valuable insight on the ecophysiological state of primary producers and the flow of energy within aquatic ecosystems. Combined global datasets of analytical flow cytometry (AFC) cell counts and High-Performance Liquid Chromatography (HPLC) pigment concentrations were used to examine vertical and seasonal variability in the ratios of phytoplankton pigments in relation to indices of cellular photoacclimation. Across all open ocean datasets, the weight-to-weight ratio of photoprotective to photosynthetic pigments showed a strong depth dependence that tracked the vertical decline in the relative availability of light. The Bermuda Atlantic Time-series Study (BATS) dataset revealed a general increase in surface values of the relative concentrations of photoprotective carotenoids from the winter-spring phytoplankton communities dominated by low-light acclimated eukaryotic microalgae to the summer and early autumn communities dominated by high-light acclimated picocyanobacteria. InProchlorococcus-dominated waters, the vertical decline in the relative contribution of photoprotective pigments to total pigment concentration could be attributed in large part to changes in the cellular content of photosynthetic pigments (PSP) rather than photoprotective pigments (PPP), as evidenced by a depth-dependent increase of the intracellular concentration of the divinyl chlorophyll-a(DVChl-a) whilst the intracellular concentration of the PPP zeaxanthin remained relatively uniform with depth. The ability ofProchlorococcuscells to adjust their DVChl-acell-1over a large gradient in light intensity was reflected in more highly variable estimates of carbon-to-Chl-aratio compared to those reported for other phytoplankton groups. This cellular property is likely the combined result of photoacclimatory changes at the cellular level and a shift in dominant ecotypes. Developing a mechanistic understanding of sources of variability in pigmentation of picocyanobacteria is critical if the pigment markers and bio-optical properties of these cells are to be used to map their biogeography and serve as indicators of photoacclimatory state of subtropical phytoplankton communities more broadly. It would also allow better assessment of effects on, and adaptability of phytoplankton communities in the tropical/subtropical ocean due to climate change.more » « less
-
Abstract Although iron and light are understood to regulate the Southern Ocean biological carbon pump, observations have also indicated a possible role for manganese. Low concentrations in Southern Ocean surface waters suggest manganese limitation is possible, but its spatial extent remains poorly constrained and direct manganese limitation of the marine carbon cycle has been neglected by ocean models. Here, using available observations, we develop a new global biogeochemical model and find that phytoplankton in over half of the Southern Ocean cannot attain maximal growth rates because of manganese deficiency. Manganese limitation is most extensive in austral spring and depends on phytoplankton traits related to the size of photosynthetic antennae and the inhibition of manganese uptake by high zinc concentrations in Antarctic waters. Importantly, manganese limitation expands under the increased iron supply of past glacial periods, reducing the response of the biological carbon pump. Overall, these model experiments describe a mosaic of controls on Southern Ocean productivity that emerge from the interplay of light, iron, manganese and zinc, shaping the evolution of Antarctic phytoplankton since the opening of the Drake Passage.more » « less
-
Abstract The availability of the micronutrient iron is important in regulating phytoplankton growth across much of the world’s oceans, particularly in the high-nutrient, low-chlorophyll regions. Compared to known mechanisms of iron acquisition and conservation in autotrophic protists (e.g. diatoms), those of dinoflagellates remain unclear, despite their frequent presence in offshore iron-limited waters. Here, we investigate the strategies of an ecologically important mixotrophic dinoflagellate to coping with low iron conditions. Coupled gene expression and physiological responses as a function of iron availability were examined in oceanic and coastal strains of the dinoflagellate Karlodinium. Under iron-replete conditions, grazing was only detected in coastal variants, resulting in faster growth rates compared to when grown autotrophically. Under iron-limited conditions, all isolates exhibited slower growth rates, reduced photosynthetic efficiencies, and lower cellular iron quotas than in iron-replete conditions. However, oceanic isolates exhibited higher relative growth rates compared to coastal isolates under similar low iron concentrations, suggesting they are better adapted to coping under iron limitation. Yet the oceanic isolates did not exhibit the ability to appreciably reduce cell volume or increase iron-use efficiencies compared to the coastal isolates to cope with iron limitation, as often observed in oceanic diatoms. Rather, molecular pathway analysis and corresponding gene expression patterns suggest that oceanic Karlodinium utilizes a high-affinity iron uptake system when iron is low. Our findings reveal cellular mechanisms by which dinoflagellates have adapted to low iron conditions, further shedding light on how they potentially survive in variable iron regions of the world’s oceans.more » « less
An official website of the United States government

