skip to main content


This content will become publicly available on September 19, 2024

Title: Are there any “science people” in undergraduate health science courses? Assessing science identity among pre‐nursing and pre‐allied health students in a community college setting
Abstract

Science identity, or one's sense of recognition and competence as a scientist, is an invaluable tool for predicting student persistence and success, but is understudied among undergraduates completing preparatory work for later studies in medicine, nursing, and allied health (“pre‐health career students”). In the United States, pre‐health career students make up approximately half of all biology students and, as professionals, play important roles in caring for an aging, increasingly diverse population, managing the ongoing effects of a pandemic, and navigating socio‐political shifts in public attitudes toward science and evidence‐based medicine. Pre‐health career students are also often members of groups marginalized and minoritized in STEM education, and generally complete their degrees in community college settings, which are chronically under‐resourced and understudied. Understanding these students' science identities is thus a matter of social justice and increasingly important to public health in the United States. We examined science identity and engagement among community college biology students using two scales established and validated for use with STEM students attending four‐year institutions. Exploratory and confirmatory factor analysis were used on two sub‐samples drawn from the pool of 846 participants to confirm that the factor structures functioned as planned among the new population. Science identity values were then compared between pre‐health career students (pre‐nursing and pre‐allied health) and other groups. Pre‐health career students generally reported interest and performance/competence on par with their traditional STEM, pre‐med, and pre‐dentistry peers, challenging popular assumptions about these students' interests and abilities. However, they also reported significantly lower recognition than traditional STEM and pre‐med/dentistry students. The implications for public health, researchers, and faculty are discussed.

 
more » « less
Award ID(s):
1730130
NSF-PAR ID:
10482727
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Journal of Research in Science Teaching
ISSN:
0022-4308
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Offerdahl, Erika (Ed.)
    Despite the wealth of research exploring science, technology, engineering, and mathematics (STEM) identity and career goals in both formal and informal settings, existing literature does not consider STEM identity for undergraduate students pursuing health and medical careers through STEM pathways. We address this gap by examining the STEM identity of undergraduate STEM majors on pre-med/health tracks as it compares with that of other STEM majors, thus focusing on a population that is chronically understudied in STEM education research. We surveyed 440 undergraduate STEM students enrolled in entry-level STEM courses to assess their STEM identities and three identity precursors: interest, performance–competence, and recognition. Through regression analyses accounting for gender, major, and perceived home support around STEM, we found that pre-med/health students were more likely to have higher STEM identity and recognition scores than their peers; we did not detect a significant difference for performance–competence or interest in STEM. Although there is little tracking of pre-med/health students’ ultimate career attainment, the implications of our findings support a potential for sustaining pre-med/health students while simultaneously creating pathways to other STEM pursuits for the nearly 60% of those who do not enter medical school by offering participation in experiences that affirm their STEM identities. 
    more » « less
  2. https://peer.asee.org/28741 Previous studies quantitatively and qualitatively measured and validated the constructs that make up math identity, physics identity and engineering identity (i.e., interest in the subject, recognition by others, and beliefs about one’s performance/competence) for predicting engineering choice. To answer the first research question, a Welch’s t-test was used to compare the averages of first-generation college students and non-first-generation college students on overall measures of mathematics, physics, and engineering identity as well as the constructs of interest, recognition, and performance/competence in each subject area. This t-test was selected because it corrects unequal variance within the two populations. To answer the second research question, we used multiple linear regression to predict the choices of STEM and non-stem majors using measures of identity, affective factors, and first-generation college student status. Results from the first analysis demonstrate that first-generation college students entered engineering with a high sense of engineering identity, particularly in the performance/competence and interest constructs. Regression results showed that first-generation college students’ physics identity positively predicted choice of a non-STEM career; that is, first-generation college students with high physics identity were more interested in non-STEM careers (e.g., non-profit/non-government organization and medicine/health). This work highlights that first-generation college students may have different career pathway intentions and motivations in studying engineering during college. 
    more » « less
  3. This research paper investigates the relationship between race/ ethnicity, gender, first-generation college student status, and engineering identity using cross-sectional data from early-career engineering majors. Measures of engineering identity are increasingly used in models of engineering education to evaluate how identity contributes to success and persistence of engineering students. Engineering identity is generally assumed to contribute to educational success, with stronger engineering identity leading to persistence. At the same time, data clearly shows that persistence of engineering students varies by race/ethnicity and gender. Given these previous findings, we would expect to find that engineering identity will vary by race/ ethnicity, gender, and first generation status. Yet, relatively little work has quantitatively compared how engineering identity differs across racial/ ethnic groups and gender. While researchers are increasingly trying to gain a better understanding of engineering identity among Latina students, for example, the literature has not yet adequately accounted for how Latina students differ from their non-Hispanic white peers. This works seeks to address that gap in the literature with an exploration of the ways that race/ethnicity, gender, and first generation status work together to impact engineering identity among early-career engineering students at four public Hispanic-Serving Institutions (HSIs) in the Southwestern United States. We conducted surveys as part of a longitudinal study on STEM education. Data discussed here comes from baseline surveys of three cohorts of engineering students (N=475). Approximately two-thirds of the respondents were attending a traditional 4-year university while the remainder (N=159) were attending community college at the time of the survey. Approximately two-thirds of the respondents identified as Latinx, 27% identified as female, and 26.5% reported that they were first-generation college students. While expectations were that engineering identity would vary by race/ethnicity and gender, preliminary analyses of our data unexpectedly reveal no significant differences between Latinx and White students in terms of their engineering identity and no significant differences in engineering identity between male and female students. Interactions between race/ethnicity and gender were also tested and yielded no significant differences between early-career Latinx and White students in terms of their engineering identity. Finally, students who reported that they will be the first in their family to get a college degree had significantly lower engineering identity scores (=-.422; p=.001). These results lead us to conclude that first generation status at HSIs may be more important than gender and race/ ethnicity in the development of engineering identity for early career students. 
    more » « less
  4. nterest in science, technology, engineering, and mathematics (STEM) begins as early as elementary and middle school. As youth enter adolescence, they begin to shape their personal identities and start making decisions about who they are and could be in the future. Students form their career aspirations and interests related to STEM in elementary school, long before they choose STEM coursework in high school or college. Much of the literature examines either science or STEM identity and career aspirations without separating out individual sub-disciplines. Therefore, the purpose of this paper is to describe the development of a survey instrument to specifically measure engineering identity and career aspirations in adolescents and preadolescents. When possible, we utilized existing measures of STEM identity and career aspirations, adapting them when necessary to the elementary school level and to fit the engineering context. The instrument was developed within the context of a multi-year, NSF-funded research project examining the dynamics between undergraduate outreach providers and elementary students to understand the impact of the program on students’ engineering identity and career aspirations. Three phases of survey development were conducted that involved 492 elementary students from diverse communities in the United States. Three sets of items were developed and/or adapted throughout the four phases. The first set of items assessed Engineering Identity. Recent research suggests that identity consists of three components: recognition, interest, and performance/competence. Items assessing each of these constructs were included in the survey. The second and third sets of items reflected Career Interests and Aspirations. Because elementary and middle school students often have a limited or nascent awareness of what engineers do or misconceptions about what a job in science or engineering entails, it is problematic to measure their engineering identity or career aspirations by directly asking them whether they want to be a scientist/engineer or by using a checklist of broad career categories. Therefore, similar to other researchers, the second set of items assessed the types of activities that students are interested in doing as part of a future career, including both non-STEM and STEM (general and engineering-specific) activities. These items were created by the research team or adapted from activity lists used in existing research. The third set of items drew from career counseling measures relying on Holland’s Career Codes. We adapted the format of these instruments by asking students to choose the activity they liked the most from a list of six activities that reflected each of the codes rather than responding to their interest about each activity. Preliminary findings for each set of items will be discussed. Results from the survey contribute to our understanding of engineering identities and career aspirations in preadolescent and adolescent youth. However, our instrument has the potential for broader application in non-engineering STEM environments (e.g., computer science) with minor wording changes to reflect the relevant science subject area. More research is needed in determining its usefulness in this capacity. 
    more » « less
  5. Background:

    The United States continues to invest considerable resources into developing the next generation of science, technology, engineering, and mathematics (STEM) talent. Efforts to shore up interest in pursuing STEM careers span decades and have increasingly focused on boosting interest among diverse student populations. Policymakers have called for engaging students in a greater STEM ecology of support that extends beyond the traditional classroom environment to increase student STEM career interest. Yet, few robust studies exist exploring the efficacy of many programmatic efforts and initiatives outside the regular curriculum intended to foster STEM interest. To maximize STEM education investments, promote wise policies, and help achieve the aim of creating STEM learning ecosystems that benefit diverse student populations and meet the nation’s STEM goals, it is crucial to examine the effectiveness of these kinds of STEM education initiatives in promoting STEM career aspirations.

    Purpose:

    The purpose of this quasi-experimental study was to examine the impact of one popular, yet understudied, STEM education initiative on students’ STEM career aspirations: participation in a university- or college-run STEM club or program activity (CPA) during high school. Specifically, we studied whether participation in a college-run STEM CPA at a postsecondary institution during high school was related to college-going students’ STEM career aspirations, and we examined whether that relationship differed depending on student characteristics and prior STEM interests.

    Research Design:

    We conducted a quasi-experimental investigation to explore the impact of participation in university- or college-run STEM CPAs on college-going students’ STEM career aspirations. We administered a retrospective cohort survey to students at 27 colleges and universities nationwide resulting in a sample of 15,847 respondents. An inverse probability of treatment weighted logistic regression model with a robust set of controls was computed to estimate the odds of expressing STEM career aspirations among those who participated in college-run STEM CPAs compared with the odds expressed among students who did not participate. Our weighting accounted for self-selection effects.

    Results:

    Quasi-experimental modeling results indicated that participation in university- or college-run STEM CPAs had a significant impact on the odds that college-going students would express STEM career aspirations relative to students who did not participate. The odds of expressing interest in a STEM career among participants in STEM CPAs were 1.49 times those of the control group. Robustness checks confirmed our results. The result held true for students whether or not they expressed interest in STEM careers prior to participation in STEM CPAs, and it held true across a diverse range of student characteristics (e.g., race, parental education, gender, standardized test scores, and family/school encouragement).

    Conclusions:

    Results suggest that university- and college-run STEM CPAs play an important role in the STEM education ecology, serving the national goal of expanding the pool of college-going students who aspire to STEM careers. Moreover, results showed that participation in university- and college-run STEM CPAs during high school is equally effective across diverse student characteristics. Policymakers, educators, and those charged with making investment decisions in STEM education should seriously consider university- and college-run STEM CPAs as a promising vehicle to promote diverse students’ STEM career aspirations in the broader STEM learning ecosystem and as an important complement to other STEM learning environments.

     
    more » « less