skip to main content


This content will become publicly available on November 27, 2024

Title: Finding a Natural Fit: A Thematic Analysis of Amputees’ Prosthesis Setting Preferences during User-Guided Auto-Tuning

Amputees’ preferences for prosthesis settings are critical not only for their psychological well-being but also for long-term adherence to device adoption and health. Although active lower-limb prostheses can provide enhanced functionality than passive devices, little is known about the mechanism of preferences for settings in active devices. Therefore, a think-aloud study was conducted on three amputees to unravel their preferences for a powered robotic knee prosthesis during user-guided auto-tuning. The inductive thematic analysis revealed that amputee patients were more likely to use their own passive device rather than the intact leg as the reference for the natural walking that they were looking for in the powered device. There were large individual differences in factors influencing naturalness. The mental optimization of preference decisions was mostly based on the noticeableness of the differences between knee profiles. The implications on future design and research in active prostheses were discussed.

 
more » « less
Award ID(s):
1926998
NSF-PAR ID:
10482739
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Sage Journals
Date Published:
Journal Name:
Proceedings of the Human Factors and Ergonomics Society Annual Meeting
ISSN:
2169-5067
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background After above-knee amputation, the missing biological knee and ankle are replaced with passive prosthetic devices. Passive prostheses are able to dissipate limited amounts of energy using resistive damper systems during “negative energy” tasks like sit-down. However, passive prosthetic knees are not able to provide high levels of resistance at the end of the sit-down movement when the knee is flexed, and users need the most support. Consequently, users are forced to over-compensate with their upper body, residual hip, and intact leg, and/or sit down with a ballistic and uncontrolled movement. Powered prostheses have the potential to solve this problem. Powered prosthetic joints are controlled by motors, which can produce higher levels of resistance at a larger range of joint positions than passive damper systems. Therefore, powered prostheses have the potential to make sitting down more controlled and less difficult for above-knee amputees, improving their functional mobility. Methods Ten individuals with above-knee amputations sat down using their prescribed passive prosthesis and a research powered knee-ankle prosthesis. Subjects performed three sit-downs with each prosthesis while we recorded joint angles, forces, and muscle activity from the intact quadricep muscle. Our main outcome measures were weight-bearing symmetry and muscle effort of the intact quadricep muscle. We performed paired t-tests on these outcome measures to test for significant differences between passive and powered prostheses. Results We found that the average weight-bearing symmetry improved by 42.1% when subjects sat down with the powered prosthesis compared to their passive prostheses. This difference was significant (p = 0.0012), and every subject’s weight-bearing symmetry improved when using the powered prosthesis. Although the intact quadricep muscle contraction differed in shape, neither the integral nor the peak of the signal was significantly different between conditions (integral p > 0.01, peak p > 0.01). Conclusions In this study, we found that a powered knee-ankle prosthesis significantly improved weight-bearing symmetry during sit-down compared to passive prostheses. However, we did not observe a corresponding decrease in intact-limb muscle effort. These results indicate that powered prosthetic devices have the potential to improve balance during sit-down for individuals with above-knee amputation and provide insight for future development of powered prosthetics. 
    more » « less
  2. null (Ed.)
    Transfemoral amputee gait often exhibits compensations due to the lack of ankle push-off power and control over swing foot position using passive prostheses. Powered prostheses can restore this functionality, but their effects on compensatory behaviors, specifically at the residual hip, are not well understood. This paper investigates residual hip compensations through walking experiments with three transfemoral amputees using a low-impedance powered knee-ankle prosthesis compared to their day-to-day passive prosthesis. The powered prosthesis used impedance control during stance for compliant interaction with the ground, a time-based push-off controller to deliver high torque and power, and phase-based trajectory tracking during swing to provide user control over foot placement. Experiments show that when subjects utilized the powered ankle push-off, less mechanical pull-off power was required from the residual hip to progress the limb forward. Overall positive work at the residual hip was reduced for 2 of 3 subjects, and negative work was reduced for all subjects. Moreover, all subjects displayed increased step length, increased propulsive impulses on the prosthetic side, and improved impulse symmetries. Hip circumduction improved for subjects who had previously exhibited this compensation on their passive prosthesis. These improvements in gait, especially reduced residual hip power and work, have the potential to reduce fatigue and overuse injuries in persons with transfemoral amputation. 
    more » « less
  3. Avoiding obstacles poses a significant challenge for amputees using mechanically-passive transfemoral prosthetic limbs due to their lack of direct knee control. In contrast, powered prostheses can potentially improve obstacle avoidance via their ability to add energy to the system. In past work, researchers have proposed stumble recovery systems for powered prosthetic limbs that provide assistance in the event of a trip. However, these systems only aid recovery after an obstacle has disrupted the user's gait and do not proactively help the amputee avoid obstacles. To address this problem, we designed an adaptive system that learns online to use kinematic data from the prosthetic limb to detect the user's obstacle avoidance intent in early swing. When the system detects an obstacle, it alters the planned swing trajectory to help avoid trips. Additionally, the system uses a regression model to predict the required knee flexion angle for the trip response. We validated the system by comparing obstacle avoidance success rates with and without the obstacle avoidance system. For a non-amputee subject wearing the prosthesis through an adapter, the trip avoidance system improved the obstacle negotiation success rate from 37% to 89%, while an amputee subject improved his success rate from 35% to 71% when compared to utilizing minimum jerk trajectories for the knee and ankle joints. 
    more » « less
  4. Abstract

    There is significant need for low-cost, high-performance prosthetic knees in low- and middle-income countries (LMICs) due to a large number of amputees and particularly challenging socioeconomic and environmental conditions. Prostheses are important for maintaining one’s participation in society, culture, and the economy, but many are either prohibitively expensive or do not provide near-able-bodied kinematics. Poor performing prosthetic knees cause discomfort and draw unwanted attention to transfemoral amputees. In this study, we refine the design of a high-performing, single-axis, passive prosthetic knee developed with a focus on the Indian market in order to reduce cost, weight, and part count; enhance manufacturability; and improve aesthetics. The load paths and functional componentry were critically analyzed to identify opportunities to streamline the design while maintaining strength and the near-able-bodied kinematics offered by the original design. The part count was reduced almost four-fold, and the mass of the prosthesis was reduced three-fold. An enclosure was also designed to encase the functional componentry in an aesthetically acceptable package. The changes made to the design are believed to significantly advance the usability and commercial viability of the prosthetic knee. This study may serve as an example of how products developed for emerging markets may achieve affordability without sacrificing performance.

     
    more » « less
  5. Prostheses help amputees to maintain physical health and quality of life. Prosthesis wearers’ satisfaction and adherence to the prosthesis are closely related to the preferences for prosthesis tuning settings. However, the underlying factors that contribute to the preferences were under-explored. In this study, two able-bodied participants were asked to change the robotic prosthesis settings to their preferred state and the think-aloud technique with a mixed-method approach was used to reveal the contributing factors of preferences. We found that physical perception (e.g., positions of the prosthetic foot, balance, and stability) and subjective feelings (e.g., comfortableness, satisfaction, confidence, and worries) were two major factors. Experiences with the intact leg and other profiles were used as anchors for their preference levels. Preferences may also differ with situational context such as walking speed. The saturation points were reached with no strong approach motivation. The implications for prosthesis design and research were discussed.

     
    more » « less