This content will become publicly available on November 27, 2024
Amputees’ preferences for prosthesis settings are critical not only for their psychological well-being but also for long-term adherence to device adoption and health. Although active lower-limb prostheses can provide enhanced functionality than passive devices, little is known about the mechanism of preferences for settings in active devices. Therefore, a think-aloud study was conducted on three amputees to unravel their preferences for a powered robotic knee prosthesis during user-guided auto-tuning. The inductive thematic analysis revealed that amputee patients were more likely to use their own passive device rather than the intact leg as the reference for the natural walking that they were looking for in the powered device. There were large individual differences in factors influencing naturalness. The mental optimization of preference decisions was mostly based on the noticeableness of the differences between knee profiles. The implications on future design and research in active prostheses were discussed.
more » « less- Award ID(s):
- 1926998
- NSF-PAR ID:
- 10482739
- Publisher / Repository:
- Sage Journals
- Date Published:
- Journal Name:
- Proceedings of the Human Factors and Ergonomics Society Annual Meeting
- ISSN:
- 2169-5067
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Background After above-knee amputation, the missing biological knee and ankle are replaced with passive prosthetic devices. Passive prostheses are able to dissipate limited amounts of energy using resistive damper systems during “negative energy” tasks like sit-down. However, passive prosthetic knees are not able to provide high levels of resistance at the end of the sit-down movement when the knee is flexed, and users need the most support. Consequently, users are forced to over-compensate with their upper body, residual hip, and intact leg, and/or sit down with a ballistic and uncontrolled movement. Powered prostheses have the potential to solve this problem. Powered prosthetic joints are controlled by motors, which can produce higher levels of resistance at a larger range of joint positions than passive damper systems. Therefore, powered prostheses have the potential to make sitting down more controlled and less difficult for above-knee amputees, improving their functional mobility. Methods Ten individuals with above-knee amputations sat down using their prescribed passive prosthesis and a research powered knee-ankle prosthesis. Subjects performed three sit-downs with each prosthesis while we recorded joint angles, forces, and muscle activity from the intact quadricep muscle. Our main outcome measures were weight-bearing symmetry and muscle effort of the intact quadricep muscle. We performed paired t-tests on these outcome measures to test for significant differences between passive and powered prostheses. Results We found that the average weight-bearing symmetry improved by 42.1% when subjects sat down with the powered prosthesis compared to their passive prostheses. This difference was significant (p = 0.0012), and every subject’s weight-bearing symmetry improved when using the powered prosthesis. Although the intact quadricep muscle contraction differed in shape, neither the integral nor the peak of the signal was significantly different between conditions (integral p > 0.01, peak p > 0.01). Conclusions In this study, we found that a powered knee-ankle prosthesis significantly improved weight-bearing symmetry during sit-down compared to passive prostheses. However, we did not observe a corresponding decrease in intact-limb muscle effort. These results indicate that powered prosthetic devices have the potential to improve balance during sit-down for individuals with above-knee amputation and provide insight for future development of powered prosthetics.more » « less
-
null (Ed.)Transfemoral amputee gait often exhibits compensations due to the lack of ankle push-off power and control over swing foot position using passive prostheses. Powered prostheses can restore this functionality, but their effects on compensatory behaviors, specifically at the residual hip, are not well understood. This paper investigates residual hip compensations through walking experiments with three transfemoral amputees using a low-impedance powered knee-ankle prosthesis compared to their day-to-day passive prosthesis. The powered prosthesis used impedance control during stance for compliant interaction with the ground, a time-based push-off controller to deliver high torque and power, and phase-based trajectory tracking during swing to provide user control over foot placement. Experiments show that when subjects utilized the powered ankle push-off, less mechanical pull-off power was required from the residual hip to progress the limb forward. Overall positive work at the residual hip was reduced for 2 of 3 subjects, and negative work was reduced for all subjects. Moreover, all subjects displayed increased step length, increased propulsive impulses on the prosthetic side, and improved impulse symmetries. Hip circumduction improved for subjects who had previously exhibited this compensation on their passive prosthesis. These improvements in gait, especially reduced residual hip power and work, have the potential to reduce fatigue and overuse injuries in persons with transfemoral amputation.more » « less
-
Prostheses help amputees to maintain physical health and quality of life. Prosthesis wearers’ satisfaction and adherence to the prosthesis are closely related to the preferences for prosthesis tuning settings. However, the underlying factors that contribute to the preferences were under-explored. In this study, two able-bodied participants were asked to change the robotic prosthesis settings to their preferred state and the think-aloud technique with a mixed-method approach was used to reveal the contributing factors of preferences. We found that physical perception (e.g., positions of the prosthetic foot, balance, and stability) and subjective feelings (e.g., comfortableness, satisfaction, confidence, and worries) were two major factors. Experiences with the intact leg and other profiles were used as anchors for their preference levels. Preferences may also differ with situational context such as walking speed. The saturation points were reached with no strong approach motivation. The implications for prosthesis design and research were discussed.
-
Challenges associated with current prosthetic technologies limit the quality of life of lower-limb amputees. Passive prostheses lead amputees to walk slower, use more energy, fall more often, and modify their gait patterns to compensate for the prosthesis' lack of net-positive mechanical energy. Robotic prostheses can provide mechanical energy, but may also introduce challenges through controller design. Fortunately, talented researchers are studying how to best control robotic leg prostheses, but the time and resources required to develop prosthetic hardware has limited their potential impact. Even after research is completed, comparison of results is confounded by the use of different, researcher-specific hardware. To address these issues, we have developed the Open-source Leg (OSL): a scalable robotic knee/ankle prosthesis intended to foster investigations of control strategies. This paper introduces the design goals, transmission selection, hardware implementation, and initial control benchmarks for the OSL. The OSL provides a common hardware platform for comparison of control strategies, lowers the barrier to entry for prosthesis research, and enables testing within the lab, community, and at home.more » « less
-
Challenges associated with current prosthetic technologies limit the quality of life of lower-limb amputees. Passive prostheses lead amputees to walk slower, use more energy, fall more often, and modify their gait patterns to compensate for the prosthesis’ lack of net-positive mechanical energy. Robotic prostheses can provide mechanical energy, but may also introduce challenges through controller design. Fortunately, talented researchers are studying how to best control robotic leg prostheses, but the time and resources required to develop prosthetic hardware has limited their potential impact. Even after research is completed, comparison of results is confounded by the use of different, researcher-specific hardware. To address these issues, we have developed the Open-source Leg (OSL): a scalable robotic knee/ankle prosthesis intended to foster investigations of control strategies. This paper introduces the design goals, transmission selection, hardware implementation, and initial control benchmarks for the OSL. The OSL provides a common hardware platform for comparison of control strategies, lowers the barrier to entry for prosthesis research, and enables testing within the lab, community, and at home.more » « less