skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Understanding the Preferences for Lower-Limb Prosthesis: A Think-Aloud Study during User-Guided Auto-Tuning

Prostheses help amputees to maintain physical health and quality of life. Prosthesis wearers’ satisfaction and adherence to the prosthesis are closely related to the preferences for prosthesis tuning settings. However, the underlying factors that contribute to the preferences were under-explored. In this study, two able-bodied participants were asked to change the robotic prosthesis settings to their preferred state and the think-aloud technique with a mixed-method approach was used to reveal the contributing factors of preferences. We found that physical perception (e.g., positions of the prosthetic foot, balance, and stability) and subjective feelings (e.g., comfortableness, satisfaction, confidence, and worries) were two major factors. Experiences with the intact leg and other profiles were used as anchors for their preference levels. Preferences may also differ with situational context such as walking speed. The saturation points were reached with no strong approach motivation. The implications for prosthesis design and research were discussed.

 
more » « less
Award ID(s):
1926998
PAR ID:
10482756
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Sage Journals
Date Published:
Journal Name:
Proceedings of the Human Factors and Ergonomics Society Annual Meeting
Volume:
66
Issue:
1
ISSN:
2169-5067
Page Range / eLocation ID:
2159 to 2163
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Amputees’ preferences for prosthesis settings are critical not only for their psychological well-being but also for long-term adherence to device adoption and health. Although active lower-limb prostheses can provide enhanced functionality than passive devices, little is known about the mechanism of preferences for settings in active devices. Therefore, a think-aloud study was conducted on three amputees to unravel their preferences for a powered robotic knee prosthesis during user-guided auto-tuning. The inductive thematic analysis revealed that amputee patients were more likely to use their own passive device rather than the intact leg as the reference for the natural walking that they were looking for in the powered device. There were large individual differences in factors influencing naturalness. The mental optimization of preference decisions was mostly based on the noticeableness of the differences between knee profiles. The implications on future design and research in active prostheses were discussed.

     
    more » « less
  2. null (Ed.)
    Recommender systems are widely used to help customers find the most relevant and personalized products or services tailored to their preferences. However, traditional systems ignore the preferences of the other side of the market, e.g., “product suppliers” or “service providers”, towards their customers. In this paper, we present 2SRS a Two-Sided Recommender System that recommends coupons, supplied by local businesses, to passerby while considering the preferences of both sides towards each other. For example, some passerby may only be interested in coffee shops whereas certain businesses may only be interested in sending coupons to new customers only. Our experimental results show that 2SRS delivers higher satisfaction when considering both sides of the market compared to the baseline methods. 
    more » « less
  3. How does the extent of automobile use affect the level of satisfaction that people derive from their daily travel routine, after controlling for many other attributes including socio-economic and demographic characteristics, attitudinal factors, and lifestyle proclivities and preferences? This is the research question addressed by this paper. In this study, data collected from four automobile-dominated metropolitan regions in the United States (Phoenix, Austin, Atlanta, and Tampa) are used to assess the impact of the amount of driving that individuals undertake on the level of satisfaction that they derive from their daily travel routine. This research effort recognizes the presence of endogeneity when modeling multiple behavioral phenomena of interest and the role that latent attitudinal constructs reflecting lifestyle preferences play in shaping the association between behavioral mobility choices and degree of satisfaction. The model is estimated using the generalized heterogeneous data model (GHDM) methodology. Results show that latent attitudinal factors representing an environmentally friendly lifestyle, a proclivity toward car ownership and driving, and a desire to live close to transit and in diverse land use patterns affect the relative frequency of auto-driving mode use for non-commute trips and level of satisfaction with daily travel routine. Additionally, the amount of driving positively affects satisfaction with daily travel routine, implying that bringing about mode shifts toward more sustainable alternatives remains a formidable challenge—particularly in automobile-centric contexts. 
    more » « less
  4. Abstract Background

    Transfemoral prosthesis users’ high fall rate is related to increased injury risk, medical costs, and fear of falling. Better understanding how stumble conditions (e.g., participant age, prosthesis type, side tripped, and swing phase of perturbation) affect transfemoral prosthesis users could provide insight into response deficiencies and inform fall prevention interventions.

    Methods

    Six unilateral transfemoral prosthesis users experienced obstacle perturbations to their sound limb in early, mid, and late swing phase. Fall outcome, recovery strategy, and kinematics of each response were recorded to characterize (1) recoveries versus falls for transfemoral prosthesis users and (2) prosthesis user recoveries versus healthy adult recoveries.

    Results

    Out of 26 stumbles, 15 resulted in falls with five of six transfemoral prosthesis users falling at least once. By contrast, in a previously published study of seven healthy adults comprising 214 stumbles using the same experimental apparatus, no participants fell. The two oldest prosthesis users fell after every stumble, stumbles in mid swing resulted in the most falls, and prosthesis type was not related to strategy/fall outcomes. Prosthesis users who recovered used the elevating strategy in early swing, lowering strategy in late swing, and elevating or lowering/delayed lowering with hopping in mid swing, but exhibited increased contralateral (prosthetic-side) thigh abduction and trunk flexion relative to healthy controls. Falls occurred if the tripped (sound) limb did not reach ample thigh/knee flexion to sufficiently clear the obstacle in the elevating step, or if the prosthetic limb did not facilitate a successful step response after the initial sound-side elevating or lowering step. Such responses generally led to smaller step lengths, less anterior foot positioning, and more forward trunk flexion/flexion velocity in the resulting foot-strikes.

    Conclusions

    Introducing training (e.g., muscle strength or task-specific motor skill) and/or modifying assistive devices (e.g., lower-limb prostheses or exoskeletons) may improve responses for transfemoral prosthesis users. Specifically, training or exoskeleton assistance could help facilitate sufficient thigh/knee flexion for elevating; training or prosthesis assistance could provide support-limb counteracting torques to aid in elevating; and training or prosthesis assistance could help initiate and safely complete prosthetic swing.

     
    more » « less
  5. Although the average healthy adult transitions from sit to stand over 60 times per day, most research on powered prosthesis control has only focused on walking. In this paper, we present a data-driven controller that enables sitting, standing, and walking with minimal tuning. Our controller comprises two high level modes of sit/stand and walking, and we develop heuristic biomechanical rules to control transitions. We use a phase variable based on the user's thigh angle to parameterize both walking and sit/stand motions, and use variable impedance control during ground contact and position control during swing. We extend previous work on data-driven optimization of continuous impedance parameter functions to design the sit/stand control mode using able-bodied data. Experiments with a powered knee-ankle prosthesis used by a participant with above-knee amputation demonstrate promise in clinical outcomes, as well as trade-offs between our minimal-tuning approach and accommodation of user preferences. Specifically, our controller enabled the participant to complete the sit/stand task 20% faster and reduced average asymmetry by half compared to his everyday passive prosthesis. The controller also facilitated a timed up and go test involving sitting, standing, walking, and turning, with only a mild (10%) decrease in speed compared to the everyday prosthesis. Our sit/stand/walk controller enables multiple activities of daily life with minimal tuning and mode switching. 
    more » « less