skip to main content


This content will become publicly available on January 1, 2025

Title: Self-Optimizing Vapor Compression Cycles Online With Bayesian Optimization Under Local Search Region Constraints
Self-optimizing efficiency of vapor compression cycles (VCCs) involves assigning multiple decision variables simultaneously in order to minimize power consumption while maintaining safe operating conditions. Due to the modeling complexity associated with cycle dynamics (and other smart building energy systems), online self-optimization requires algorithms that can safely and efficiently explore the search space in a derivative-free and model-agnostic manner. This makes Bayesian optimization (BO) a strong candidate for self-optimization. Unfortunately, classical BO algorithms ignore the relationship between consecutive optimizer candidates, resulting in jumps in the search space that can lead to fail-safe mechanisms being triggered, or undesired transient dynamics that violate operational constraints. To this end, we propose safe local search region (LSR)-BO, a global optimization methodology that builds on the BO framework while enforcing two types of safety constraints including black-box constraints on the output and LSR constraints on the input. We provide theoretical guarantees that under standard assumptions on the performance and constraint functions, LSR-BO guarantees constraints will be satisfied at all iterations with high probability. Furthermore, in the presence of only input LSR constraints, we show the method will converge to the true (unknown) globally optimal solution. We demonstrate the potential of our proposed LSR-BO method on a high-fidelity simulation model of a commercial vapor compression system with both LSR constraints on expansion valve positions and fan speeds, in addition to other safety constraints on discharge and evaporator temperatures.  more » « less
Award ID(s):
2237616
NSF-PAR ID:
10482897
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ASME Digital Collection
Date Published:
Journal Name:
Journal of Dynamic Systems, Measurement, and Control
Volume:
146
Issue:
1
ISSN:
0022-0434
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstarct

    This work presents a theoretical framework for the safety‐critical control of time delay systems. The theory of control barrier functions, that provides formal safety guarantees for delay‐free systems, is extended to systems with state delay. The notion of control barrier functionals is introduced, to attain formal safety guarantees by enforcing the forward invariance of safe sets defined in the infinite dimensional state space. The proposed framework is able to handle multiple delays and distributed delays both in the dynamics and in the safety condition, and provides an affine constraint on the control input that yields provable safety. This constraint can be incorporated into optimization problems to synthesize pointwise optimal and provable safe controllers. The applicability of the proposed method is demonstrated by numerical simulation examples.

     
    more » « less
  2. We study the problem of safe online convex optimization, where the action at each time step must satisfy a set of linear safety constraints. The goal is to select a sequence of ac- tions to minimize the regret without violating the safety constraints at any time step (with high probability). The parameters that specify the linear safety constraints are unknown to the algorithm. The algorithm has access to only the noisy observations of constraints for the chosen actions. We pro- pose an algorithm, called the Safe Online Projected Gradient Descent(SO-PGD) algorithm to address this problem. We show that, under the assumption of the availability of a safe baseline action, the SO-PGD algorithm achieves a regret O(T^2/3). While there are many algorithms for online convex optimization (OCO) problems with safety constraints avail- able in the literature, they allow constraint violations during learning/optimization, and the focus has been on characterizing the cumulative constraint violations. To the best of our knowledge, ours is the first work that provides an algorithm with provable guarantees on the regret, without violating the linear safety constraints (with high probability) at any time step. 
    more » « less
  3. Optimizing expensive to evaluate black-box functions over an input space consisting of all permutations of d objects is an important problem with many real-world applications. For example, placement of functional blocks in hardware design to optimize performance via simulations. The overall goal is to minimize the number of function evaluations to find high-performing permutations. The key challenge in solving this problem using the Bayesian optimization (BO) framework is to trade-off the complexity of statistical model and tractability of acquisition function optimization. In this paper, we propose and evaluate two algorithms for BO over Permutation Spaces (BOPS). First, BOPS-T employs Gaussian process (GP) surrogate model with Kendall kernels and a Tractable acquisition function optimization approach to select the sequence of permutations for evaluation. Second, BOPS-H employs GP surrogate model with Mallow kernels and a Heuristic search approach to optimize the acquisition function. We theoretically analyze the performance of BOPS-T to show that their regret grows sub-linearly. Our experiments on multiple synthetic and real-world benchmarks show that both BOPS-T and BOPS-H perform better than the state-of-the-art BO algorithm for combinatorial spaces. To drive future research on this important problem, we make new resources and real-world benchmarks available to the community. 
    more » « less
  4. Sheet Metal (SM) fabrication is perhaps one of the most common metalworking technique. Despite its prevalence, SM design is manual and costly, with rigorous practices that restrict the search space, yielding suboptimal results. In contrast, we present a framework for the first automatic design of SM parts. Focusing on load bearing applications, our novel system generates a high-performing manufacturable SM that adheres to the numerous constraints that SM design entails: The resulting part minimizes manufacturing costs while adhering to structural, spatial, and manufacturing constraints. In other words, the part should be strong enough, not disturb the environment, and adhere to the manufacturing process. These desiderata sum up to an elaborate, sparse, and expensive search space. Our generative approach is a carefully designed exploration process, comprising two steps. In Segment Discovery connections from the input load to attachable regions are accumulated, and during Segment Composition the most performing valid combination is searched for. For Discovery, we define a slim grammar, and sample it for parts using a Markov-Chain Monte Carlo (MCMC) approach, ran in intercommunicating instances (i.e, chains) for diversity. This, followed by a short continuous optimization, enables building a diverse and high-quality library of substructures. During Composition, a valid and minimal cost combination of the curated substructures is selected. To improve compliance significantly without additional manufacturing costs, we reinforce candidate parts onto themselves --- a unique SM capability called self-riveting. we provide our code and data in https://github.com/amir90/AutoSheetMetal. We show our generative approach produces viable parts for numerous scenarios. We compare our system against a human expert and observe improvements in both part quality and design time. We further analyze our pipeline's steps with respect to resulting quality, and have fabricated some results for validation. We hope our system will stretch the field of SM design, replacing costly expert hours with minutes of standard CPU, making this cheap and reliable manufacturing method accessible to anyone. 
    more » « less
  5. Fast and safe voltage regulation algorithms can serve as fundamental schemes for achieving a high level of renewable penetration in modern distribution power grids. Faced with uncertain or even unknown distribution grid models and fast changing power injections, model-free deep reinforcement learning (DRL) algorithms have been proposed to find the reactive power injections for inverters while optimizing the voltage profiles. However, such data-driven controllers can not guarantee the satisfaction of the hard operational constraints, such as maintaining voltage profiles within a certain range of the nominal value. To this end, we propose SAVER: SAfe Voltage Regulator, which is composed of an RL learner and a specifically designed, computationally efficient safety projection layer. SAVER provides a plug-and-play interface for a set of DRL algorithms that guarantees the system voltages are within safe bounds. Numerical simulations on real-world data validate the performance of the proposed algorithm. 
    more » « less