skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2237616

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2026
  2. Free, publicly-accessible full text available January 1, 2026
  3. Free, publicly-accessible full text available December 1, 2025
  4. Free, publicly-accessible full text available December 1, 2025
  5. Self-optimizing efficiency of vapor compression cycles (VCCs) involves assigning multiple decision variables simultaneously in order to minimize power consumption while maintaining safe operating conditions. Due to the modeling complexity associated with cycle dynamics (and other smart building energy systems), online self-optimization requires algorithms that can safely and efficiently explore the search space in a derivative-free and model-agnostic manner. This makes Bayesian optimization (BO) a strong candidate for self-optimization. Unfortunately, classical BO algorithms ignore the relationship between consecutive optimizer candidates, resulting in jumps in the search space that can lead to fail-safe mechanisms being triggered, or undesired transient dynamics that violate operational constraints. To this end, we propose safe local search region (LSR)-BO, a global optimization methodology that builds on the BO framework while enforcing two types of safety constraints including black-box constraints on the output and LSR constraints on the input. We provide theoretical guarantees that under standard assumptions on the performance and constraint functions, LSR-BO guarantees constraints will be satisfied at all iterations with high probability. Furthermore, in the presence of only input LSR constraints, we show the method will converge to the true (unknown) globally optimal solution. We demonstrate the potential of our proposed LSR-BO method on a high-fidelity simulation model of a commercial vapor compression system with both LSR constraints on expansion valve positions and fan speeds, in addition to other safety constraints on discharge and evaporator temperatures. 
    more » « less