skip to main content


Title: Computational multi-gene interactions in virus growth and infection spread
Abstract

Viruses persist in nature owing to their extreme genetic heterogeneity and large –population sizes, which enable them to evade host immune defenses, escape anti-viral drugs, and adapt to new hosts. The persistence of viruses is challenging to study because mutations affect multiple virus genes, interactions among genes in their impacts on virus growth are seldom known, and measures of viral fitness have yet to be standardized. To address these challenges, we employed a data-driven computational model of cell infection by a virus. The infection model accounted for the kinetics of viral gene expression, functional gene-gene interactions, genome replication, and allocation of host cellular resources to produce progeny of vesicular stomatitis virus (VSV), a prototype RNA virus. We used this model to computationally probe how interactions among genes carrying up to 11 deleterious mutations affect different measures of virus fitness: single-cycle growth yields and multi-cycle rates of infection spread. Individual mutations were implemented by perturbing biophysical parameters associated with individual gene functions of the wild-type model. Our analysis revealed synergistic epistasis among deleterious mutations in their effects on virus yield; so adverse effects of single deleterious mutations were amplified by interaction. For the same mutations, multi-cycle infection spread indicated weak or negligible epistasis, where single mutations act alone in their effects on infection spread. These results were robust to simulation under high and low host resource environments. Our work highlights how different types and magnitudes of epistasis can arise for genetically identical virus variants, depending on the fitness measure. More broadly, gene-gene interactions can differently affect how viruses grow and spread.

 
more » « less
Award ID(s):
2151959
NSF-PAR ID:
10482920
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Virus Evolution
ISSN:
2057-1577
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Viral Hemorrhagic Septicemia virus (VHSV) is a pathogenic fish rhabdovirus found in discrete locales throughout the northern hemisphere. VHSV infection of fish cells leads to upregulation of the host's virus detection response, but the virus quickly suppresses interferon (IFN) production and antiviral genes expression. By systematically screening each of the six VHSV structural and nonstructural genes, we have identified matrix protein (M) as its most potent anti-host protein. VHSV-IVb M alone suppressed mitochondrial antiviral signaling protein (MAVS) and type I IFN-induced gene expression in a dose-dependent manner. M also suppressed the constitutively active SV40 promoter and globally decreased cellular RNA levels. Chromatin immunoprecipitation (ChIP) studies illustrated that M inhibited RNA polymerase II (RNAP II) recruitment to gene promoters, and decreased RNAP II CTD Ser2 phosphorylation during VHSV infection. However, transcription directed by RNAP I-III was suppressed by M. To identify regions of functional importance, M proteins from a variety of VHSV strains were tested in cell-based transcriptional inhibition assays. M protein of a particular VHSV-Ia strain, F1, was significantly less potent than -IVb M at inhibiting SV40/luc expression, yet differed by just four amino acids. Mutation of D62 to alanine alone, or in combination with an E181 to alanine mutation (D62A/E181A), dramatically reduced the ability of -IVb M to suppress host transcription. Introducing either M D62A or D62A/E181A mutations into VHSV-IVb via reverse genetics resulted in viruses that replicated efficiently but exhibited less cytotoxicity and reduced anti-transcriptional activities, implicating M as a primary regulator of cytopathicity and host transcriptional suppression. Importance: Viruses must suppress host antiviral responses to replicate and spread between hosts. In these studies, we identified the matrix protein of the deadly fish Novirhabdovirus, VHSV, as a critical mediator of host suppression during infection. Our studies indicated that M alone could block cellular gene expression at very low expression levels. We identified several subtle mutations in M that were less potent at suppressing host transcription. When these mutations were engineered back into recombinant viruses, the resulting viruses replicated well but elicited less toxicity in infected cells and activated host innate immune responses more robustly. These data demonstrated that VHSV M plays an important role in mediating both virus-induced cell toxicity and viral replication. Our data suggest that its roles in these two processes can be separated to design effective attenuated viruses for vaccine candidates. 
    more » « less
  2. Abstract

    Interactions among co‐infecting pathogens are common across host taxa and can affect infectious disease dynamics. Host nutrition can mediate these among‐pathogen interactions, altering the establishment and growth of pathogens within hosts. It is unclear, however, how nutrition‐mediated among‐pathogen interactions affect transmission and the spread of disease through populations. We manipulated the nitrogen (N) and phosphorus (P) supplies to oat plants in growth chambers and evaluated interactions between two aphid‐vectored Barley and Cereal Yellow Dwarf Viruses: PAV and RPV. We quantified the effect of each virus on the other’s establishment, within‐plant density, and transmission. Co‐inoculation significantly increased PAV density when N and P supplies were low and tended to increase RPV density when N supply was high. Co‐infection increased PAV transmission when N and P supplies were low and tended to increase RPV transmission when N supply was high. Despite the parallels between the effects of among‐pathogen interactions on density and transmission, changes in virus density only partially explained changes in transmission, suggesting that virus density‐independent processes contribute to transmission. A mathematical model describing the spread of two viruses through a plant population, parameterized with empirically derived transmission values, demonstrated that nutrition‐mediated among‐pathogen interactions could affect disease spread. Interactions that altered transmission through virus density‐independent processes determined overall disease dynamics. Our work suggests that host nutrition alters disease spread through among‐pathogen interactions that modify transmission.

     
    more » « less
  3. As an adapting population traverses the fitness landscape, its local neighborhood (i.e., the collection of fitness effects of single-step mutations) can change shape because of interactions with mutations acquired during evolution. These changes to the distribution of fitness effects can affect both the rate of adaptation and the accumulation of deleterious mutations. However, while numerous models of fitness landscapes have been proposed in the literature, empirical data on how this distribution changes during evolution remains limited. In this study, we directly measure how the fitness landscape neighborhood changes during laboratory adaptation. Using a barcode-based mutagenesis system, we measure the fitness effects of 91 specific gene disruption mutations in genetic backgrounds spanning 8000–10,000 generations of evolution in two constant environments. We find that the mean of the distribution of fitness effects decreases in one environment, indicating a reduction in mutational robustness, but does not change in the other. We show that these distribution-level patterns result from differences in the relative frequency of certain patterns of epistasis at the level of individual mutations, including fitness-correlated and idiosyncratic epistasis. 
    more » « less
  4. Baculoviruses are large dsDNA viruses that are virulent pathogens of certain insect species. In a natural host, Trichoplusia ni, infection by the model baculovirus Autographa californica Multiple Nucleopolyhedrovirus (AcMNPV) begins when the occluded form of the virus disassembles in the midgut and virions infect midgut epithelial cells to establish the primary phase of the infection. To better understand the primary phase of the AcMNPV infection cycle, newly molted 5 th instar T. ni larvae were orally infected with AcMNPV occlusion bodies and transcriptional responses of the T. ni midgut were analyzed at various times from 0-72 hours post infection, using RNA-Seq analysis and a T. ni reference genome. The numbers of differentially expressed host genes increased as the infection progressed, and we identified a total of 3,372 differentially expressed T. ni transcripts in the AcMNPV-infected midgut. Genes encoding orthologs of HMG176, atlastin, and CPH43 were among the most dramatically upregulated in response to AcMNPV infection. A number of cytochrome P450 genes were downregulated in response to infection. We also identified the effects of AcMNPV infection on a large variety of genes associated with innate immunity. This analysis provides an abundance of new and detailed information on host responses to baculovirus infection during the primary phase of the infection in the midgut, and will be important for understanding how baculoviruses establish productive infections in the organism. IMPORTANCE Baculoviruses are virulent pathogens of a number of important insect pest species. In the host Trichoplusia ni , infection begins in the midgut when infectious virions of the occulsion derived virus (ODV) phenotype enter and subsequently replicate in cells of the midgut epithelium. A second virion phenotype (budded virus or BV) is produced there and BV mediates systemic infection of the animal. Most prior detailed studies of baculovirus infections have focused on BV infections of cultured cells. In this study, we examined the transcriptional responses of the T. ni midgut to infection by ODV of the baculovirus AcMNPV, and identified a variety of host genes that respond dramatically to viral infection. Understanding transcriptional responses of the host midgut to viral infection is critically important for understanding the biphasic infection in the animal as a whole. 
    more » « less
  5. Abstract

    Ecologists have long studied the evolution of niche breadth, including how variability in environments can drive the evolution of specialism and generalism. This concept is of particular interest in viruses, where niche breadth evolution may explain viral disease emergence, or underlie the potential for therapeutic measures like phage therapy. Despite the significance and potential applications of virus–host interactions, the genetic determinants of niche breadth evolution remain underexplored in many bacteriophages. In this study, we present the results of an evolution experiment with a model bacteriophage system,Escherichia virus T4,in several host environments: exposure toEscherichia coliC, exposure toE. coliK‐12, and exposure to bothE. coliC andE. coliK‐12. This experimental framework allowed us to investigate the phenotypic and molecular manifestations of niche breadth evolution. First, we show that selection on different hosts led to measurable changes in phage productivity in all experimental populations. Second, whole—genome sequencing of experimental populations revealed signatures of selection. Finally, clear and consistent patterns emerged across the host environments, especially the presence of new mutations in phage structural genes—genes encoding proteins that provide morphological and biophysical integrity to a virus. A comparison of mutations found across functional gene categories revealed that structural genes acquired significantly more mutations than other categories. Our findings suggest that structural genes are central determinants in bacteriophage niche breadth.

     
    more » « less