skip to main content


Title: Life-history responses to temperature and seasonality mediate ectotherm consumer–resource dynamics under climate warming

Climate warming is altering life cycles of ectotherms by advancing phenology and decreasing generation times. Theoretical models provide powerful tools to investigate these effects of climate warming on consumer–resource population dynamics. Yet, existing theory primarily considers organisms with simplified life histories in constant temperature environments, making it difficult to predict how warming will affect organisms with complex life cycles in seasonal environments. We develop a size-structured consumer–resource model with seasonal temperature dependence, parameterized for a freshwater insect consuming zooplankton. We simulate how climate warming in a seasonal environment could alter a key life-history trait of the consumer, number of generations per year, mediating responses of consumer–resource population sizes and consumer persistence. We find that, with warming, consumer population sizes increase through multiple mechanisms. First, warming decreases generation times by increasing rates of resource ingestion and growth and/or lengthening the growing season. Second, these life-history changes shorten the juvenile stage, increasing the number of emerging adults and population-level reproduction. Unstructured models with similar assumptions found that warming destabilized consumer–resource dynamics. By contrast, our size-structured model predicts stability and consumer persistence. Our study suggests that, in seasonal environments experiencing climate warming, life-history changes that lead to shorter generation times could delay population extinctions.

 
more » « less
Award ID(s):
1754250
NSF-PAR ID:
10482976
Author(s) / Creator(s):
; ;
Publisher / Repository:
Royal Society
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Edition / Version:
1
Volume:
290
Issue:
1997
ISSN:
0962-8452
Page Range / eLocation ID:
20222377
Subject(s) / Keyword(s):
climate change life cycle predator–prey population dynamics temperature seasonality
Format(s):
Medium: X Size: 13MB Other: pdf
Size(s):
13MB
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A rapidly changing climate has the potential to interfere with the timing of environmental cues that ectothermic organisms rely on to initiate and regulate life history events. Short‐lived ectotherms that exhibit plasticity in their life history could increase the number of generations per year under warming climate. If many individuals successfully complete an additional generation, the population experiences an additional opportunity to grow, and a warming climate could lead to a demographic bonanza. However, these plastic responses could become maladaptive in temperate regions, where a warmer climate could trigger a developmental pathway that cannot be completed within the growing season, referred to as a developmental trap. Here we incorporated detailed demography into commonly used photothermal models to evaluate these demographic consequences of phenological shifts due to a warming climate on the formerly widespread, multivoltine butterfly (Pieris oleracea). Using species‐specific temperature‐ and photoperiod‐sensitive vital rates, we estimated the number of generations per year and population growth rate over the set of climate conditions experienced during the past 38 years. We predicted that populations in the southern portion of its range have added a fourth generation in recent years, resulting in higher annual population growth rates (demographic bonanzas). We predicted that populations in the Northeast United States have experienced developmental traps, where increases in the thermal window initially caused mortality of the final generation and reduced growth rates. These populations may recover if more growing degree days are added to the year. Our framework for incorporating detailed demography into commonly used photothermal models demonstrates the importance of using both demography and phenology to predict consequences of phenological shifts.

     
    more » « less
  2. Synopsis New biophysical theory and electronic databases raise the prospect of deriving fundamental rules of life, a conceptual framework for how the structures and functions of molecules, cells, and individual organisms give rise to emergent patterns and processes of ecology, evolution, and biodiversity. This framework is very general, applying across taxa of animals from 10–10 g protists to 108 g whales, and across environments from deserts and abyssal depths to rain forests and coral reefs. It has several hallmarks: (1) Energy is the ultimate limiting resource for organisms and the currency of biological fitness. (2) Most organisms are nearly equally fit, because in each generation at steady state they transfer an equal quantity of energy (˜22.4 kJ/g) and biomass (˜1 g/g) to surviving offspring. This is the equal fitness paradigm (EFP). (3) The enormous diversity of life histories is due largely to variation in metabolic rates (e.g., energy uptake and expenditure via assimilation, respiration, and production) and biological times (e.g., generation time). As in standard allometric and metabolic theory, most physiological and life history traits scale approximately as quarter-power functions of body mass, m (rates as ∼m–1/4 and times as ∼m1/4), and as exponential functions of temperature. (4) Time is the fourth dimension of life. Generation time is the pace of life. (5) There is, however, considerable variation not accounted for by the above scalings and existing theories. Much of this “unexplained” variation is due to natural selection on life history traits to adapt the biological times of generations to the clock times of geochronological environmental cycles. (6) Most work on biological scaling and metabolic ecology has focused on respiration rate. The emerging synthesis applies conceptual foundations of energetics and the EFP to shift the focus to production rate and generation time. 
    more » « less
  3. Abstract

    Warming can impact consumer–resource interactions through multiple mechanisms. For example, warming can both alter the rate at which predators consume prey and the rate prey develop through vulnerable life stages. Thus, the overall effect of warming on consumer–resource interactions will depend upon the strength and asymmetry of warming effects on predator and prey performance.

    Here, we quantified the temperature dependence of both (a) density‐dependent predation rates for two dragonfly nymph predators on a shared mosquito larval prey, via the functional response, and (b) the development rate of mosquito larval prey to a predator‐invulnerable adult stage. We united the results of these two empirical studies using a temperature‐ and density‐dependent stage‐structured predation model to predict the effects of temperature on the number of larvae that survive to adulthood.

    Warming accelerated both larval mosquito development and increased dragonfly consumption. Model simulations suggest that differences in the magnitude and rate of predator and prey responses to warming determined the change in magnitude of the overall effect of predation on prey survival to adulthood. Specifically, we found that depending on which predator species prey were exposed to in the model, the net effect of warming was either an overall reduction or no change in predation strength across a temperature gradient.

    Our results highlight a need for better mechanistic understanding of the differential effects of temperature on consumer–resource pairs to accurately predict how warming affects food web dynamics.

    A freeplain language summarycan be found within the Supporting Information of this article.

     
    more » « less
  4. Abstract Anthropogenically-driven climate warming is a hypothesized driver of animal body size reductions. Less understood are effects of other human-caused disturbances on body size, such as urbanization. We compiled 140,499 body size records of over 100 North American mammals to test how climate and human population density, a proxy for urbanization, and their interactions with species traits, impact body size. We tested three hypotheses of body size variation across urbanization gradients: urban heat island effects, habitat fragmentation, and resource availability. Our results demonstrate that both urbanization and temperature influence mammalian body size variation, most often leading to larger individuals, thus supporting the resource availability hypothesis. In addition, life history and other ecological factors play a critical role in mediating the effects of climate and urbanization on body size. Larger mammals and species that utilize thermal buffering are more sensitive to warmer temperatures, while flexibility in activity time appears to be advantageous in urbanized areas. This work highlights the value of using digitized, natural history data to track how human disturbance drives morphological variation. 
    more » « less
  5. Abstract

    Sea turtles present a model for the potential impacts of climate change on imperiled species, with projected warming generating concern about their persistence. Various sea turtle life-history traits are affected by temperature; most strikingly, warmer egg incubation temperatures cause female-biased sex ratios and higher embryo mortality. Predictions of sea turtle resilience to climate change are often focused on how resulting male limitation or reduced offspring production may affect populations. In the present article, by reviewing research on sea turtles, we provide an overview of how temperature impacts on incubating eggs may cascade through life history to ultimately affect population viability. We explore how sex-specific patterns in survival and breeding periodicity determine the differences among offspring, adult, and operational sex ratios. We then discuss the implications of skewed sex ratios for male-limited reproduction, consider the negative correlation between sex ratio skew and genetic diversity, and examine consequences for adaptive potential. Our synthesis underscores the importance of considering the effects of climate throughout the life history of any species. Lethal effects (e.g., embryo mortality) are relatively direct impacts, but sublethal effects at immature life-history stages may not alter population growth rates until cohorts reach reproductive maturity. This leaves a lag during which some species transition through several stages subject to distinct biological circumstances and climate impacts. These perspectives will help managers conceptualize the drivers of emergent population dynamics and identify existing knowledge gaps under different scenarios of predicted environmental change.

     
    more » « less