skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Torque-Limited Manipulation Planning through Contact by Interleaving Graph Search and Trajectory Optimization
—Robots often have to perform manipulation tasks in close proximity to people (Fig 1). As such, it is desirable to use a robot arm that has limited joint torques so as to not injure the nearby person. Unfortunately, these limited torques then limit the payload capability of the arm. By using contact with the environment, robots can expand their reachable workspace that, otherwise, would be inaccessible due to exceeding actuator torque limits. We adapt our recently developed INSAT algorithm [1] to tackle the problem of torque-limited whole arm manipulation planning through contact. INSAT requires no prior over contact mode sequence and no initial template or seed for trajectory optimization. INSAT achieves this by interleaving graph search to explore the manipulator joint configuration space with incre- mental trajectory optimizations seeded by neighborhood solutions to find a dynamically feasible trajectory through contact. We demonstrate our results on a variety of manipulators and scenarios in simulation. We also experimentally show our planner exploiting robot-environment contact for the pick and place of a payload using a Kinova Gen3 robot. In comparison to the same trajectory running in free space, we experimentally show that the utilization of bracing contacts reduces the overall torque required to execute the trajectory.  more » « less
Award ID(s):
1734360
PAR ID:
10483024
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Subject(s) / Keyword(s):
planning, contact, confined spaces
Format(s):
Medium: X
Location:
London, United Kingdom
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Research in quadrupedal robotics is transitioning to studies into loco-manipulation, featuring fully articulated robotic arms mounted atop these robots. Integrating such arms enhances the practical utility of legged robots, paving the way for expanded applications like industrial inspection and search and rescue. Existing literature commonly employs a six-degree-of-freedom (six-DoF) arm directly mounted to the robot, which inherently adds significant weight and reduces the available payload for manipulation tasks. Our study explores an optimized combination of arm configuration and control framework by strategically reducing the DoFs and leveraging the quadruped robot’s inherent agile mobility. We demonstrate that by minimizing the DoFs to just one, a range of canonical loco-manipulation tasks can still be accomplished. Some tasks even show improved performance with fewer robotic arm DoFs due to the higher torque motor used in the design, allowing more of the robot’s payload to be used for manipulation. We designed our optimized one-DoF robotic arm and the control framework and tested it on top of a Unitree Aliengo. Our design outperforms conventional six-DoF counterparts in lifting capacity, achieving an impressive 8 kg payload compared to the 2 kg maximum payload of industry-standard six-DoF robotic arms on the same quadruped platform. 
    more » « less
  2. Robot-assisted gait training is becoming increasingly common to support recovery of walking function after neurological injury. How to formulate controllers capable of promoting desired features in gait, i.e. goals, is complicated by the limited understanding of the human response to robotic input. A possible method to formulate controllers for goal-oriented gait training is based on the analysis of the joint torques applied by healthy subjects to modulate such goals. The objective of this work is to understand how sagittal plane joint torque is affected by two important gait parameters: gait speed (GS) and stride length (SL). We here present the results obtained from healthy subjects walking on a treadmill at different speeds, and asked to modulate stride length via visual feedback. Via principal component analysis, we extracted the global effects of the two factors on the peak-to-peak amplitude of joint torques. Next, we used a torque pulse approximation analysis to determine optimal timing and amplitude of torque pulses that approximate the SL-specific difference in joint torque profiles measured at different values of GS. Our results show a strong effect of GS on the torque profiles in all joints considered. In contrast, SL mostly affects the torque produced at the knee joint at early and late stance, with smaller effects on the hip and ankle joints. Our analysis generated a set of torque assistance profiles that will be experimentally tested using gait training robots. 
    more » « less
  3. Detecting and localizing contacts is essential for robot manipulators to perform contact-rich tasks in unstructured environments. While robot skins can localize contacts on the surface of robot arms, these sensors are not yet robust or easily accessible. As such, prior works have explored using proprioceptive observations, such as joint velocities and torques, to perform contact localization. Many past approaches assume the robot is static during contact incident, a single contact is made at a time, or having access to accurate dynamics models and joint torque sensing. In this work, we relax these assumptions and propose using Domain Randomization to train a neural network to localize contacts of robot arms in motion without joint torque observations. Our method uses a novel cylindrical projection encoding of the robot arm surface, which allows the network to use convolution layers to process input features and transposed convolution layers to predict contacts. The trained network achieves a contact detection accuracy of 91.5% and a mean contact localization error of 3.0cm. We further demonstrate an application of the contact localization model in an obstacle mapping task, evaluated in both simulation and the real world. 
    more » « less
  4. Recent studies on quadruped robots have focused on either locomotion or mobile manipulation using a robotic arm. However, legged robots can manipulate large objects using non-prehensile manipulation primitives, such as planar pushing, to drive the object to the desired location. This paper presents a novel hierarchical model predictive control (MPC) for contact optimization of the manipulation task. Using two cascading MPCs, we split the loco-manipulation problem into two parts: the first to optimize both contact force and contact location between the robot and the object, and the second to regulate the desired interaction force through the robot locomotion. Our method is successfully validated in both simulation and hardware experiments. While the baseline locomotion MPC fails to follow the desired trajectory of the object, our proposed approach can effectively control both object's position and orientation with minimal tracking error. This capability also allows us to perform obstacle avoidance for both the robot and the object during the loco-manipulation task. 
    more » « less
  5. This paper presents a new 14-DoF dual manipulation system for the CMU ballbot. The result is a new type of robot that combines smooth omnidirectional motion with the capability to interact with objects and the environment through manipulation. The system includes a pair of 7-DoF arms. Each arm weighs 12.9 kg, with a reach of 0.815 m, and a maximum payload of 10 kg at full extension. The ballbot's arms have a larger payload-to-weight ratio than commercial cobot arms with similar or greater payload. Design features include highly integrated sensor-actuator-control units in each joint, lightweight exoskeleton structure, and anthropomorphic kinematics. The integration of the arms with the CMU ballbot is demonstrated through heavy payload carrying and balancing experiments. 
    more » « less