Abstract Biological neutralization represents a general strategy that deploys therapeutic agents to bind with harmful molecules or infectious pathogens, block their bioactivity, and thus prevent them from causing the diseases. Here, a comprehensive review of using cell‐membrane‐coated nanoparticles, namely “cellular nanosponges,” as host decoys for a wide range of biological neutralization applications is provided. Compared to traditional neutralization strategies, the cellular nanosponges stand out by mimicking susceptible host cells rather than accommodating the structures of the causative agents for the design of therapeutics. As all pathological agents must interact with host cells for bioactivity, nanosponges bypass the diversity of these agents and create function‐driven and broad‐spectrum neutralization solutions. The review focuses on the recent progress of using this new nanomedicine platform for neutralization against five primary pathological agents, including bacterial toxins, chemical toxicants, inflammatory cytokines, pathological antibodies, and viruses. Existing studies have established cellular nanosponges as versatile tools for biological neutralization. A thorough review of the cellular nanosponge technology is expected to inspire more refined cellular nanosponge designs and unique neutralization applications to address unsolved medical problems.
more »
« less
Perspectives on Principles of Cellular Behavior from the Biophysics of Protists
Synopsis Cells are the fundamental unit of biological organization. Although it may be easy to think of them as little more than the simple building blocks of complex organisms such as animals, single cells are capable of behaviors of remarkable apparent sophistication. This is abundantly clear when considering the diversity of form and function among the microbial eukaryotes, the protists. How might we navigate this diversity in the search for general principles of cellular behavior? Here, we review cases in which the intensive study of protists from the perspective of cellular biophysics has driven insight into broad biological questions of morphogenesis, navigation and motility, and decision making. We argue that applying such approaches to questions of evolutionary cell biology presents rich, emerging opportunities. Integrating and expanding biophysical studies across protist diversity, exploiting the unique characteristics of each organism, will enrich our understanding of general underlying principles.
more »
« less
- Award ID(s):
- 2233770
- PAR ID:
- 10483066
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Integrative And Comparative Biology
- Volume:
- 63
- Issue:
- 6
- ISSN:
- 1540-7063
- Format(s):
- Medium: X Size: p. 1405-1421
- Size(s):
- p. 1405-1421
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT The symbiosis between termites and their hindgut protists is mutually obligate and vertically inherited. It was established by the late Jurassic in the cockroach ancestors of termites as they transitioned to wood feeding. Since then, protist symbionts have been transmitted from host generation to host generation by proctodeal trophallaxis (anal feeding). The protists belong to multiple lineages within the eukaryotic superphylum Metamonada. Most of these lineages have evolved large cells with complex morphology, unlike the non‐termite‐associated Metamonada. The species richness and taxonomic composition of symbiotic protist communities varies widely across termite lineages, especially within the deep‐branching clade Teletisoptera. In general, closely related termites tend to harbour closely related protists, and deep‐branching termites tend to harbour deep‐branching protists, reflecting their broad‐scale co‐diversification. A closer view, however, reveals a complex distribution of protist lineages across hosts. Some protist taxa are common, some are rare, some are widespread, and some are restricted to a single host family or genus. Some protist taxa can be found in only a few, distantly related, host species. Thus, the long history of co‐diversification in this symbiosis has been complicated by lineage‐specific loss of symbionts, transfer of symbionts from one host lineage to another, and by independent diversification of the symbionts relative to their hosts. This review aims to introduce the biology of this important symbiosis and serve as a gateway to the diversity and systematics literature for both termites and protists. A searchable database with all termite‐protist occurrence records and taxonomic references is provided as a supplementary file to encourage and facilitate new research in this field.more » « less
-
Cellular decision making is the process whereby cells choose one developmental pathway from multiple possible ones, either spontaneously or due to environmental stimuli. Examples in various cell types suggest an almost inexhaustible plethora of underlying molecular mechanisms. In general, cellular decisions rely on the gene regulatory network, which integrates external signals to drive cell fate choice. The search for general principles of such a process benefits from appropriate biological model systems that reveal how and why certain gene regulatory mechanisms drive specific cellular decisions according to ecological context and evolutionary outcomes. In this article, we review the historical and ongoing development of the phage lambda lysis–lysogeny decision as a model system to investigate all aspects of cellular decision making. The unique generality, simplicity, and richness of phage lambda decision making render it a constant source ofmathematical modeling–aided inspiration across all of biology. We discuss the origins and progress of quantitative phage lambda modeling from the 1950s until today, as well as its possible future directions. We provide examples of how modeling enabled methods and theory development, leading to new biological insights by revealing gaps in the theory and pinpointing areas requiring further experimental investigation. Overall, we highlight the utility of theoretical approaches both as predictive tools, to forecast the outcome of novel experiments, and as explanatory tools, to elucidate the natural processes underlying experimental data.more » « less
-
Abstract Stress represents a multi‐faceted force that is central for the evolution of life. Organisms evolve while adapting to stress and stressful contexts often represent selective bottlenecks. To understand stress effects on biological systems and corresponding coping strategies it is imperative to properly define stress and the resulting strain that triggers compensatory responses in cells and organisms. Here I am deriving such definitions for biological systems based on principles that are established in physics. The relationship between homeostasis of critical biological variables, the elastic limit, the cellular stress response (CSR), cellular homeostasis response (CHR), system dysregulation, and the breaking point (death of the system) is outlined. Dysregulation of homeostatic set‐points of biological variables perturbs the functional properties of the system, shifting them out of the evolutionarily optimized range. Such shifts are accompanied by elevated rates of macromolecular damage, which represents a nonspecific signal for induction of a universal response, the CSR. The CSR complements the CHR in re‐establishing homeostasis of the system as a whole. Moreover, the CSR is essential for coping with suboptimal conditions while the system is in a dysregulated state and for removing excessive damage that accumulates during such periods. The extreme complexity of biological systems and their emergent properties often necessitate monitoring stress effects on many biological variables simultaneously to properly deduce stress effects on the system as a whole. Therefore, increased utilization of systems biology (omics) approaches for characterizing cellular and organismal stress responses facilitates the reductionist dissection of biological stress response mechanisms.more » « less
-
When students think of evolution, they might imagine T. rex, or perhaps an abiotic scene of sizzling electrical storms and harsh reducing atmospheres, an Earth that looks like a lunar landscape. Natural selection automatically elicits responses that include “survival of the fittest,” and “descent with modification,” and with these historical biological catch phrases, one conjures up images of large animals battling it out on the Mesozoic plane. Rarely do teachers or students apply these same ideas to cancer and the evolution of somatic cells, which have accrued mutations and epigenetic imprinting and relentlessly survive and proliferate. Our questions in this paper include the following: Can cancer become an important teaching model for students to explore fundamental hypotheses about evolutionary process? Can the multi- step somatic cancer model encourage visualizations that enable students to revisit and reenter previous primary concepts in general biology such as the cell, mitosis, chromosomes, genetic diversity, ecological diversity, immune function, and of course evolution, continually integrating their biology knowledge into process and pattern knowledge? Can the somatic cancer model expose similar patterns and protagonists, linking Darwinian observations of the natural world to our body? And, can the cancer clone model excite critical thinking and student hypotheses about what cancer is as a biological process? Does this visually simple model assist students in recognizing patterns, connecting their biological curriculum dots into a more coherent learning experience? These biological dynamics and intercepting aptitudes of cells are amplified through the cancer model and can help shape the way biology students begin to appreciate the interrelatedness of all biological systems while they continue to explore pivotal points of biological fuzziness, such as the microbiome, limitations of models, and the complex coordination of genomic networks required for the function of even a single cell and the realization of phenotypes. In this paper we use clonal evolution of cancer as a model experience for students to recreate how a single, non-germline cell appears to shadow the classic pattern of natural selection in body cells that have gone awry. With authentic STEAM activities students can easily crossover and revisit previous biological topics and the ubiquitous nature of natural selection as seen in the example of somatic cells that result in a metastasizing tumor, giving students insight into natural selection’s accommodating and tractable patterns throughout the planet.more » « less
An official website of the United States government
