Abstract This study investigates the relationship between the azimuthally averaged kinematic structure of the tropical cyclone boundary layer (TCBL) and storm intensity, intensity change, and vortex structure above the BL. These relationships are explored using composites of airborne Doppler radar vertical profiles, which have a higher vertical resolution than typically used three-dimensional analyses and, therefore, better capture TCBL structure. Results show that the BL height, defined by the depth of the inflow layer, is greater in weak storms than in strong storms. The inflow layer outside the radius of maximum tangential wind speed (RMW) is deeper in intensifying storms than in nonintensifying storms at an early stage. The peak BL convergence inside the RMW is larger in intensifying storms than in nonintensifying storms. Updrafts originating from the TCBL are concentrated near the RMW for intensifying TCs, while updrafts span a large radial range outside the RMW for nonintensifying TCs. In terms of vortex structure above the BL, storms with a quickly decaying radial profile of tangential wind outside the RMW (“narrow” vortices) tend to have a deeper inflow layer outside the RMW, stronger inflow near the RMW, deeper and more concentrated strong updrafts close to the RMW, and weaker inflow in the outer core region than those with a slowly decaying tangential wind profile (“broad” vortices). The narrow TCs also tend to intensify faster than broad TCs, suggesting that a key relationship exists among vortex shape, the BL kinematic structure, and TC intensity change. This relationship is further explored by comparisons of absolute angular momentum budget terms for each vortex shape.
more »
« less
An Observational Analysis of the Relationship between Tropical Cyclone Vortex Tilt, Precipitation Structure, and Intensity Change
Abstract This study uses a recently developed airborne Doppler radar database to explore how vortex misalignment is related to tropical cyclone (TC) precipitation structure and intensity change. It is found that for relatively weak TCs, defined here as storms with a peak 10-m wind of 65 kt (1 kt = 0.51 m s−1) or less, the magnitude of vortex tilt is closely linked to the rate of subsequent TC intensity change, especially over the next 12–36 h. In strong TCs, defined as storms with a peak 10-m wind greater than 65 kt, vortex tilt magnitude is only weakly correlated with TC intensity change. Based on these findings, this study focuses on how vortex tilt is related to TC precipitation structure and intensity change in weak TCs. To illustrate how the TC precipitation structure is related to the magnitude of vortex misalignment, weak TCs are divided into two groups: small-tilt and large-tilt TCs. In large-tilt TCs, storms display a relatively large radius of maximum wind, the precipitation structure is asymmetric, and convection occurs more frequently near the midtropospheric TC center than the lower-tropospheric TC center. Alternatively, small-tilt TCs exhibit a greater areal coverage of precipitation inward of a relatively small radius of maximum wind. Greater rates of TC intensification, including rapid intensification, are shown to occur preferentially for TCs with greater vertical alignment and storms in relatively favorable environments. Significance StatementAccurately predicting tropical cyclone (TC) intensity change is challenging. This is particularly true for storms that undergo rapid intensity changes. Recent numerical modeling studies have suggested that vortex vertical alignment commonly precedes the onset of rapid intensification; however, this consensus is not unanimous. Until now, there has not been a systematic observational analysis of the relationship between vortex misalignment and TC intensity change. This study addresses this gap using a recently developed airborne radar database. We show that the degree of vortex misalignment is a useful predictor for TC intensity change, but primarily for weak storms. In these cases, more aligned TCs exhibit precipitation patterns that favor greater intensification rates. Future work should explore the causes of changes in vortex alignment.
more »
« less
- Award ID(s):
- 2241605
- PAR ID:
- 10483075
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Monthly Weather Review
- Volume:
- 152
- Issue:
- 1
- ISSN:
- 0027-0644
- Format(s):
- Medium: X Size: p. 203-225
- Size(s):
- p. 203-225
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The FV3GFS is the current operational Global Forecast System (GFS) at the National Centers for Environmental Prediction (NCEP), which combines a finite-volume cubed sphere dynamical core (FV3) and GFS physics. In this study, FV3GFS is used to gain understanding of rapid intensification (RI) of tropical cyclones (TCs) in shear. The analysis demonstrates the importance of TC structure in a complex system like Hurricane Michael, which intensified to a category 5 hurricane over the Gulf of Mexico despite over 20 kt (10 m s−1) of vertical wind shear. Michael’s RI is examined using a global-nest FV3GFS ensemble with the nest at 3-km resolution. The ensemble shows a range of peak intensities from 77 to 159 kt (40–82 m s−1). Precipitation symmetry, vortex tilt, moisture, and other aspects of Michael’s evolution are compared through composites of stronger and weaker members. The 850–200-hPa vertical shear is 22 kt (11 m s−1) in the mean of both strong and weak members during the early stage. Tilt and moisture are two distinguishing factors between strong and weak members. The relationship between vortex tilt and humidification is complex, and other studies have shown both are important for sheared intensification. Here, it is shown that tilt reduction leads to upshear humidification and is thus a driving factor for intensification. A stronger initial vortex and early evolution of the vortex also appear to be the key to members that are able to resist the sheared environment.more » « less
-
Abstract The effect of tropical cyclone (TC) size on TC-induced sea surface temperature (SST) cooling and subsequent TC intensification is an intriguing issue without much exploration. Via compositing satellite-observed SST over the western North Pacific during 2004–19, this study systematically examined the effect of storm size on the magnitude, spatial extension, and temporal evolution of TC-induced SST anomalies (SSTA). Consequential influence on TC intensification is also explored. Among the various TC wind radii, SSTA are found to be most sensitive to the 34-kt wind radius (R34) (1 kt ≈ 0.51 m s−1). Generally, large TCs generate stronger and more widespread SSTA than small TCs (for category 1–2 TCs, R34: ∼270 vs 160 km; SSTA: −1.7° vs −0.9°C). Despite the same effect on prolonging residence time of TC winds, the effect of doubling R34 on SSTA is more profound than halving translation speed, due to more wind energy input into the upper ocean. Also differing from translation speed, storm size has a rather modest effect on the rightward shift and timing of maximum cooling. This study further demonstrates that storm size regulates TC intensification through an oceanic pathway: large TCs tend to induce stronger SST cooling and are exposed to the cooling for a longer time, both of which reduce the ocean’s enthalpy supply and thereby diminish TC intensification. For larger TCs experiencing stronger SST cooling, the probability of rapid intensification is half of smaller TCs. The presented results suggest that accurately specifying storm size should lead to improved cooling effect estimation and TC intensity prediction.more » « less
-
Abstract Tropical cyclone (TC) lifetime maximum intensity exhibits a distinct bimodal distribution, with peaks at tropical storm and major hurricane strength. Using a best‐track‐based algorithm to identify eyewall replacement cycle (ERC) storms, we show that ERC storms overwhelmingly populate the high‐intensity peak. Both reintensifying and non‐reintensifying ERC storms contribute, but those unable to reintensify cluster near 120–140 kt, defining the secondary peak. In contrast, reintensifying ERC storms can achieve higher intensities when moving over warmer seas with greater ocean heat content and reduced vertical wind shear. The scarcity of storms at intermediate intensities (85–105 kt) arises from rapid intensification (RI), which drives systems quickly through this range. These results clarify that while RI explains the trough at mid‐intensities, ERCs, by halting or enabling further strengthening, shape the high‐intensity peak and its upper tail. Incorporating ERC dynamics into intensity statistics may improve understanding and prediction of TC extremes.more » « less
-
Abstract The phenomenon that rapid contraction (RC) of the radius of maximum wind (RMW) could precede rapid intensification (RI) in tropical cyclones (TCs) has been found in several previous studies, but it is still unclear how frequently and to what extent RC precedes RI in rapidly intensifying and contracting TCs in observations. In this study, the statistical relationship between RMW RC and TC RI is examined based on the extended best track dataset for the North Atlantic and eastern North Pacific during 1999–2019. Results show that for more than ∼65% of available TCs, the time of the peak contraction rate precedes the time of the peak intensification rate, on average, by ∼10–15 h. With the quantitatively defined RC and RI, results show that ∼50% TCs with RC experience RI, and TCs with larger intensity and smaller RMW and embedded in more favorable environmental conditions tend to experience RI more readily following an RC. Among those TCs with RC and RI, more than ∼65% involve the onset of RC preceding the onset of RI, on average, by ∼15–25 h. The preceding time tends to be longer with lower TC intensity and larger RMW and shows weak correlations with environmental conditions. The qualitative results are insensitive to the time interval for the calculation of intensification/contraction rates and the definition of RI. The results from this study can improve our understanding of TC structure and intensity changes.more » « less
An official website of the United States government
