skip to main content


Title: High-Resolution Ensemble HFV3 Forecasts of Hurricane Michael (2018): Rapid Intensification in Shear

The FV3GFS is the current operational Global Forecast System (GFS) at the National Centers for Environmental Prediction (NCEP), which combines a finite-volume cubed sphere dynamical core (FV3) and GFS physics. In this study, FV3GFS is used to gain understanding of rapid intensification (RI) of tropical cyclones (TCs) in shear. The analysis demonstrates the importance of TC structure in a complex system like Hurricane Michael, which intensified to a category 5 hurricane over the Gulf of Mexico despite over 20 kt (10 m s−1) of vertical wind shear. Michael’s RI is examined using a global-nest FV3GFS ensemble with the nest at 3-km resolution. The ensemble shows a range of peak intensities from 77 to 159 kt (40–82 m s−1). Precipitation symmetry, vortex tilt, moisture, and other aspects of Michael’s evolution are compared through composites of stronger and weaker members. The 850–200-hPa vertical shear is 22 kt (11 m s−1) in the mean of both strong and weak members during the early stage. Tilt and moisture are two distinguishing factors between strong and weak members. The relationship between vortex tilt and humidification is complex, and other studies have shown both are important for sheared intensification. Here, it is shown that tilt reduction leads to upshear humidification and is thus a driving factor for intensification. A stronger initial vortex and early evolution of the vortex also appear to be the key to members that are able to resist the sheared environment.

 
more » « less
Award ID(s):
1822128
NSF-PAR ID:
10145169
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Monthly Weather Review
Volume:
148
Issue:
5
ISSN:
0027-0644
Page Range / eLocation ID:
p. 2009-2032
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study explores the spatial and temporal changes in tropical cyclone (TC) thermodynamic and dynamic structures before, near, and during rapid intensification (RI) under different vertical wind shear conditions through four sets of convection-permitting ensemble simulations. A composite analysis of TC structural evolution is performed by matching the RI onset time of each member. Without background flow, the axisymmetric TC undergoes a gradual strengthening of the inner-core vorticity and warm core throughout the simulation. In the presence of moderate environmental shear (5–6 m s−1), both the location and magnitude of the asymmetries in boundary layer radial flow, relative humidity, and vertical motion evolve with the tilt vector throughout the simulation. A budget analysis indicates that tilting is crucial to maintaining the midlevel vortex while stretching and vertical advection are responsible for the upper-level vorticity generation before RI when strong asymmetries arise. Two warm anomalies are observed before the RI onset when the vortex column is tilted. When approaching the RI onset, these two warm anomalies gradually merge into one. Overall, the most symmetric vortex structure is found near the RI onset. Moderately sheared TCs experience an adjustment period from a highly asymmetric structure with updrafts concentrated at the down-tilt side before RI to a more axisymmetric structure during RI as the eyewall updrafts develop. This adjustment period near the RI onset, however, is found to be the least active period for deep convection. TC development under a smaller environmental shear (2.5 m s−1) condition displays an intermediate evolution between ensemble experiments with no background flow and with moderate shear (5–6 m s−1).

     
    more » « less
  2. Abstract

    This study uses a recently developed airborne Doppler radar database to explore how vortex misalignment is related to tropical cyclone (TC) precipitation structure and intensity change. It is found that for relatively weak TCs, defined here as storms with a peak 10-m wind of 65 kt (1 kt = 0.51 m s−1) or less, the magnitude of vortex tilt is closely linked to the rate of subsequent TC intensity change, especially over the next 12–36 h. In strong TCs, defined as storms with a peak 10-m wind greater than 65 kt, vortex tilt magnitude is only weakly correlated with TC intensity change. Based on these findings, this study focuses on how vortex tilt is related to TC precipitation structure and intensity change in weak TCs. To illustrate how the TC precipitation structure is related to the magnitude of vortex misalignment, weak TCs are divided into two groups: small-tilt and large-tilt TCs. In large-tilt TCs, storms display a relatively large radius of maximum wind, the precipitation structure is asymmetric, and convection occurs more frequently near the midtropospheric TC center than the lower-tropospheric TC center. Alternatively, small-tilt TCs exhibit a greater areal coverage of precipitation inward of a relatively small radius of maximum wind. Greater rates of TC intensification, including rapid intensification, are shown to occur preferentially for TCs with greater vertical alignment and storms in relatively favorable environments.

    Significance Statement

    Accurately predicting tropical cyclone (TC) intensity change is challenging. This is particularly true for storms that undergo rapid intensity changes. Recent numerical modeling studies have suggested that vortex vertical alignment commonly precedes the onset of rapid intensification; however, this consensus is not unanimous. Until now, there has not been a systematic observational analysis of the relationship between vortex misalignment and TC intensity change. This study addresses this gap using a recently developed airborne radar database. We show that the degree of vortex misalignment is a useful predictor for TC intensity change, but primarily for weak storms. In these cases, more aligned TCs exhibit precipitation patterns that favor greater intensification rates. Future work should explore the causes of changes in vortex alignment.

     
    more » « less
  3. Abstract

    Idealized numerical simulations of weak tropical cyclones (e.g., tropical depressions and tropical storms) in sheared environments indicate that vortex tilt reduction and convective symmetrization are key structural changes that can precede intensification. Through a series of ensembles of idealized numerical simulations, this study demonstrates that including radiation in the simulations affects the timing and variability of those structural changes. The underlying reason for those effects is a background thermodynamic profile with reduced energy available to fuel strong downdrafts; such a profile leads to weaker lower-tropospheric ventilation, greater azimuthal coverage of clouds and precipitation, and smaller vortex tilt with radiation. Consequently, the simulations with radiation allow for earlier intensification at stronger shear magnitudes than without radiation. An unexpected finding from this work is a reduction of both vortex tilt and intensity variability with radiation in environments with 5 m s−1 deep-layer shear. This reduction stems from reduced variability in nonlinear feedbacks between lower-tropospheric ventilation, cold pools, convection, and vortex tilt. Sensitivity experiments confirm the relationship between those processes and suggest that microphysical processes (e.g., rain evaporation) are major sources of uncertainty in the representation of weak, sheared tropical cyclones in numerical weather prediction models.

     
    more » « less
  4. Abstract

    Tropical cyclone (TC) structure and intensity are strongly modulated by interactions with deep-layer vertical wind shear (VWS)—the vector difference between horizontal winds at 200 and 850 hPa. This paper presents a comprehensive review of more than a century of research on TC–VWS interactions. The literature broadly agrees that a TC vortex becomes vertically tilted, precipitation organizes into a wavenumber-1 asymmetric pattern, and thermal and kinematic asymmetries emerge when a TC encounters an environmental sheared flow. However, these responses depend on other factors, including the magnitude and direction of horizontal winds at other vertical levels between 200 and 850 hPa, the amount and location of dry environmental air, and the underlying sea surface temperature. While early studies investigated how VWS weakens TCs, an emerging line of research has focused on understanding how TCs intensify under moderate and strong VWS (i.e., shear magnitudes greater than 5 m s−1). Modeling and observational studies have identified four pathways to intensification: vortex tilt reduction, vortex reformation, axisymmetrization of precipitation, and outflow blocking. These pathways may not be uniquely different because convection and vortex asymmetries are strongly coupled to each other. In addition to discussing these topics, this review presents open questions and recommendations for future research on TC–VWS interactions.

     
    more » « less
  5. Abstract

    The impact of low-level flow (LLF) direction on the intensification of intense tropical cyclones under moderate deep-layer shear is investigated based on idealized numerical experiments. The background flow profiles are constructed by varying the LLF direction with the same moderate deep-layer shear. When the maximum surface wind speed of the simulation without background flow reaches 70 kt (36 m s−1), the background flow profiles are imposed. After a weakening period in the first 12 h, the members with upshear-left-pointing LLF (fast-intensifying group) intensify faster between 12 and 24 h than those members (slow-intensifying group) with downshear-right-pointing LLF. The fast-intensifying group experiences earlier development of inner-core structures after 12 h, such as potential vorticity below the midtroposphere, upper-level warm core, eyewall axisymmetrization, and radial moist entropy gradient, while the inner-core features of the slow-intensifying group remain relatively weak and asymmetric. The FI group experiences smaller tilt increase and stronger midlevel PV ring development. The upshear-left convection during 6–12 h is responsible for the earlier development of the inner core by reducing ventilation, providing axisymmetric heating, and benefiting the eyewall development. The LLF of the fast-intensifying group enhances surface heat fluxes in the downshear side, resulting in higher energy supply to the upshear-left convection from the boundary layer. In all, this study provides new insights on the impact of LLF direction on intense storms under moderate shear by modulating the surface heat fluxes and eyewall convection.

     
    more » « less