skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An observationally driven multifield approach for probing the circum-galactic medium with convolutional neural networks
ABSTRACT The circum-galactic medium (CGM) can feasibly be mapped by multiwavelength surveys covering broad swaths of the sky. With multiple large data sets becoming available in the near future, we develop a likelihood-free Deep Learning technique using convolutional neural networks (CNNs) to infer broad-scale physical properties of a galaxy’s CGM and its halo mass for the first time. Using CAMELS (Cosmology and Astrophysics with MachinE Learning Simulations) data, including IllustrisTNG, SIMBA, and Astrid models, we train CNNs on Soft X-ray and 21-cm (H i) radio two-dimensional maps to trace hot and cool gas, respectively, around galaxies, groups, and clusters. Our CNNs offer the unique ability to train and test on ‘multifield’ data sets comprised of both H i and X-ray maps, providing complementary information about physical CGM properties and improved inferences. Applying eRASS:4 survey limits shows that X-ray is not powerful enough to infer individual haloes with masses log (Mhalo/M⊙) < 12.5. The multifield improves the inference for all halo masses. Generally, the CNN trained and tested on Astrid (SIMBA) can most (least) accurately infer CGM properties. Cross-simulation analysis – training on one galaxy formation model and testing on another – highlights the challenges of developing CNNs trained on a single model to marginalize over astrophysical uncertainties and perform robust inferences on real data. The next crucial step in improving the resulting inferences on the physical properties of CGM depends on our ability to interpret these deep-learning models.  more » « less
Award ID(s):
2206055 2108944
PAR ID:
10483084
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
527
Issue:
4
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 10038-10058
Size(s):
p. 10038-10058
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present CAMELS-ASTRID, the third suite of hydrodynamical simulations in the Cosmology and Astrophysics with MachinE Learning (CAMELS) project, along with new simulation sets that extend the model parameter space based on the previous frameworks of CAMELS-TNG and CAMELS-SIMBA, to provide broader training sets and testing grounds for machine-learning algorithms designed for cosmological studies. CAMELS-ASTRID employs the galaxy formation model following the ASTRID simulation and contains 2124 hydrodynamic simulation runs that vary three cosmological parameters (Ωm8, Ωb) and four parameters controlling stellar and active galactic nucleus (AGN) feedback. Compared to the existing TNG and SIMBA simulation suites in CAMELS, the fiducial model of ASTRID features the mildest AGN feedback and predicts the least baryonic effect on the matter power spectrum. The training set of ASTRID covers a broader variation in the galaxy populations and the baryonic impact on the matter power spectrum compared to its TNG and SIMBA counterparts, which can make machine-learning models trained on the ASTRID suite exhibit better extrapolation performance when tested on other hydrodynamic simulation sets. We also introduce extension simulation sets in CAMELS that widely explore 28 parameters in the TNG and SIMBA models, demonstrating the enormity of the overall galaxy formation model parameter space and the complex nonlinear interplay between cosmology and astrophysical processes. With the new simulation suites, we show that building robust machine-learning models favors training and testing on the largest possible diversity of galaxy formation models. We also demonstrate that it is possible to train accurate neural networks to infer cosmological parameters using the high-dimensional TNG-SB28 simulation set. 
    more » « less
  2. Abstract Most diffuse baryons, including the circumgalactic medium (CGM) surrounding galaxies and the intergalactic medium (IGM) in the cosmic web, remain unmeasured and unconstrained. Fast radio bursts (FRBs) offer an unparalleled method to measure the electron dispersion measures (DMs) of ionized baryons. Their distribution can resolve the missing baryon problem and constrain the history of feedback theorized to impart significant energy to the CGM and IGM. We analyze the Cosmology and Astrophysics with Machine Learning Simulations using three suites, IllustrisTNG, SIMBA, and Astrid, each varying six parameters (two cosmological and four astrophysical feedback), for a total of 183 distinct simulation models. We find significantly different predictions between the fiducial models of the suites owing to their different implementations of feedback. SIMBA exhibits the strongest feedback, leading to the smoothest distribution of baryons and reducing the sight-line-to-sight-line variance in DMs betweenz= 0 and 1. Astrid has the weakest feedback and the largest variance. We calculate FRB CGM measurements as a function of galaxy impact parameter, with SIMBA showing the weakest DMs due to aggressive active galactic nucleus (AGN) feedback and Astrid the strongest. Within each suite, the largest differences are due to varying AGN feedback. IllustrisTNG shows the most sensitivity to supernova feedback, but this is due to the change in the AGN feedback strengths, demonstrating that black holes, not stars, are most capable of redistributing baryons in the IGM and CGM. We compare our statistics directly to recent observations, paving the way for the use of FRBs to constrain the physics of galaxy formation and evolution. 
    more » « less
  3. Abstract We train graph neural networks on halo catalogs from Gadget N -body simulations to perform field-level likelihood-free inference of cosmological parameters. The catalogs contain ≲5000 halos with masses ≳10 10 h −1 M ⊙ in a periodic volume of ( 25 h − 1 Mpc ) 3 ; every halo in the catalog is characterized by several properties such as position, mass, velocity, concentration, and maximum circular velocity. Our models, built to be permutationally, translationally, and rotationally invariant, do not impose a minimum scale on which to extract information and are able to infer the values of Ω m and σ 8 with a mean relative error of ∼6%, when using positions plus velocities and positions plus masses, respectively. More importantly, we find that our models are very robust: they can infer the value of Ω m and σ 8 when tested using halo catalogs from thousands of N -body simulations run with five different N -body codes: Abacus, CUBEP 3 M, Enzo, PKDGrav3, and Ramses. Surprisingly, the model trained to infer Ω m also works when tested on thousands of state-of-the-art CAMELS hydrodynamic simulations run with four different codes and subgrid physics implementations. Using halo properties such as concentration and maximum circular velocity allow our models to extract more information, at the expense of breaking the robustness of the models. This may happen because the different N -body codes are not converged on the relevant scales corresponding to these parameters. 
    more » « less
  4. ABSTRACT The physical processes by which gas is accreted onto galaxies, transformed into stars, and then expelled from galaxies are of paramount importance to galaxy evolution studies. Observationally constraining each of these baryonic components in the same system, however, is challenging. Furthermore, simulations indicate that the stellar mass of galaxies is a key factor influencing CGM properties. Indeed, absorption lines detected against background quasars offer the most compelling way to study the cold gas in the circumgalactic medium (CGM). The MUSE-ALMA Haloes survey is composed of quasar fields covered with VLT/MUSE observations, comprising 32 H i absorbers at 0.2 < z < 1.4 and 79 associated galaxies, with available or upcoming molecular gas measurements from ALMA. We use a dedicated 40-orbit HST UVIS and IR WFC3 broad-band imaging campaign to characterize the stellar content of these galaxies. By fitting their spectral energy distribution, we establish they probe a wide range of stellar masses: 8.1 < log (M*/M⊙) < 12.4. Given their star formation rates, most of these objects lie on the main sequence of galaxies. We also confirm a previously reported anticorrelation between the stellar masses and CGM hydrogen column density N (H i), indicating an evolutionary trend where higher mass galaxies are less likely to host large amounts of H i gas in their immediate vicinity up to 120 kpc. Together with other studies from the MUSE-ALMA Haloes survey, these data provide stellar masses of absorber hosts, a key component of galaxy formation and evolution, and observational constraints on the relation between galaxies and their surrounding medium. 
    more » « less
  5. Abstract We present the Cosmology and Astrophysics with Machine Learning Simulations (CAMELS) Multifield Data set (CMD), a collection of hundreds of thousands of 2D maps and 3D grids containing many different properties of cosmic gas, dark matter, and stars from more than 2000 distinct simulated universes at several cosmic times. The 2D maps and 3D grids represent cosmic regions that span ∼100 million light-years and have been generated from thousands of state-of-the-art hydrodynamic and gravity-only N -body simulations from the CAMELS project. Designed to train machine-learning models, CMD is the largest data set of its kind containing more than 70 TB of data. In this paper we describe CMD in detail and outline a few of its applications. We focus our attention on one such task, parameter inference, formulating the problems we face as a challenge to the community. We release all data and provide further technical details at https://camels-multifield-dataset.readthedocs.io . 
    more » « less