- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Anglés-Alcázar, Daniel (2)
-
Nagai, Daisuke (2)
-
Villaescusa-Navarro, Francisco (2)
-
Gluck, Naomi (1)
-
Medlock, Isabel (1)
-
Oppenheimer, Benjamin (1)
-
Oppenheimer, Benjamin D. (1)
-
Singh, Priyanka (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Most diffuse baryons, including the circumgalactic medium (CGM) surrounding galaxies and the intergalactic medium (IGM) in the cosmic web, remain unmeasured and unconstrained. Fast radio bursts (FRBs) offer an unparalleled method to measure the electron dispersion measures (DMs) of ionized baryons. Their distribution can resolve the missing baryon problem and constrain the history of feedback theorized to impart significant energy to the CGM and IGM. We analyze the Cosmology and Astrophysics with Machine Learning Simulations using three suites, IllustrisTNG, SIMBA, and Astrid, each varying six parameters (two cosmological and four astrophysical feedback), for a total of 183 distinct simulation models. We find significantly different predictions between the fiducial models of the suites owing to their different implementations of feedback. SIMBA exhibits the strongest feedback, leading to the smoothest distribution of baryons and reducing the sight-line-to-sight-line variance in DMs betweenz= 0 and 1. Astrid has the weakest feedback and the largest variance. We calculate FRB CGM measurements as a function of galaxy impact parameter, with SIMBA showing the weakest DMs due to aggressive active galactic nucleus (AGN) feedback and Astrid the strongest. Within each suite, the largest differences are due to varying AGN feedback. IllustrisTNG shows the most sensitivity to supernova feedback, but this is due to the change in the AGN feedback strengths, demonstrating that black holes, not stars, are most capable of redistributing baryons in the IGM and CGM. We compare our statistics directly to recent observations, paving the way for the use of FRBs to constrain the physics of galaxy formation and evolution.more » « less
-
Gluck, Naomi; Oppenheimer, Benjamin D.; Nagai, Daisuke; Villaescusa-Navarro, Francisco; Anglés-Alcázar, Daniel (, Monthly Notices of the Royal Astronomical Society)ABSTRACT The circum-galactic medium (CGM) can feasibly be mapped by multiwavelength surveys covering broad swaths of the sky. With multiple large data sets becoming available in the near future, we develop a likelihood-free Deep Learning technique using convolutional neural networks (CNNs) to infer broad-scale physical properties of a galaxy’s CGM and its halo mass for the first time. Using CAMELS (Cosmology and Astrophysics with MachinE Learning Simulations) data, including IllustrisTNG, SIMBA, and Astrid models, we train CNNs on Soft X-ray and 21-cm (H i) radio two-dimensional maps to trace hot and cool gas, respectively, around galaxies, groups, and clusters. Our CNNs offer the unique ability to train and test on ‘multifield’ data sets comprised of both H i and X-ray maps, providing complementary information about physical CGM properties and improved inferences. Applying eRASS:4 survey limits shows that X-ray is not powerful enough to infer individual haloes with masses log (Mhalo/M⊙) < 12.5. The multifield improves the inference for all halo masses. Generally, the CNN trained and tested on Astrid (SIMBA) can most (least) accurately infer CGM properties. Cross-simulation analysis – training on one galaxy formation model and testing on another – highlights the challenges of developing CNNs trained on a single model to marginalize over astrophysical uncertainties and perform robust inferences on real data. The next crucial step in improving the resulting inferences on the physical properties of CGM depends on our ability to interpret these deep-learning models.more » « less