skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-resolution imaging of solar pores
Context.Light bridges are bright, long, and narrow features that are typically connected to the formation or decay processes of sunspots and pores. Aims.The interaction of magnetic fields and plasma flows is investigated in the trailing part of an active region, where pores and magnetic knots evolve into a complex sunspot. The goal is to identify the photospheric and chromospheric processes, which transform the mainly vertical magnetic fields of pores into a sunspot with multiple umbral cores, light bridges, and rudimentary penumbrae. Methods.Conducting observations with a broad variety of telescopes and instruments provides access to different atmospheric layers and the changing morphology of features connected to strong magnetic fields. While the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO) provides full-disk continuum images and line-of-sight magnetograms, the fine structure and flows around a pore can be deduced from high-resolution observations in various wavelengths as provided by theGoodeSolar Telescope (GST) at the Big Bear Solar Observatory (BBSO). Horizontal proper motions are evaluated applying local correlation tracking (LCT) to the available time series, whereas the connectivity of sunspot features can be established using the background-subtracted activity maps (BaSAMs). Results.Photospheric flow maps indicate radial outflows, where the light bridge connects to the surrounding granulation, whereas inflows are present at the border of the pores. In contrast, the chromospheric flow maps show strong radial outflows at superpenumbral scales, even in the absence of a penumbra in the photosphere. The region in between the two polarities is characterized by expanding granules creating strong divergence centers. Variations in BaSAMs follow locations of significant and persistent changes in and around pores. The resulting maps indicate low variations along the light bridge, as well as thin hairlines connecting the light bridge to the pores and strong variations at the border of pores. Various BaSAMs demonstrate the interaction of pores with the surrounding supergranular cell. The Hαline-of-sight velocity maps provide further insights into the flow structure, with twisted motions along some of the radial filaments around the pore with the light bridge. Furthermore, flows along filaments connecting the two polarities of the active region are pronounced in the line-of-sight velocity maps. Conclusions.The present observations reveal that even small-scale changes of plasma motions in and around pores are conducive to transform pores into sunspots. In addition, chromospheric counterparts of penumbral filaments appear much earlier than the penumbral filaments in the photosphere. Penumbra formation is aided by a stable magnetic feature that anchors the advection of magnetic flux and provides a connection to the surrounding supergranular cell, whereas continuously emerging flux and strong light bridges are counteragents that affect the appearance and complexity of sunspots and their penumbrae.  more » « less
Award ID(s):
1821294 2309939
PAR ID:
10483125
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
EDP Sciences
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
675
ISSN:
0004-6361
Page Range / eLocation ID:
A182
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Coronal plumes are narrow, collimated structures that are primarily viewed above the solar poles and in coronal holes in the extreme ultraviolet, but also in sunspots. Open questions remain about plume formation, including the role of small-scale transients and whether plumes embedded in different magnetic field configurations have similar formation mechanisms. We report on coordinated Solar Orbiter/Extreme Ultraviolet Imager (EUI), Interface Region Imaging Spectrograph, and Solar Dynamics Observatory observations of the formation of a plume in sunspot penumbra in 2022 March. During this observation, Solar Orbiter was positioned near the Earth–Sun line and EUI observed at a 5 s cadence with a spatial scale of 185 km pixel−1in the solar corona. We observe fine-scale dots at various locations in the sunspot, but the brightest and highest density of dots is at the plume base. Space-time maps along the plume axis show parabolic and V-shaped patterns, and we conclude that some of these dots are possible signatures of magneto-acoustic shocks. Compared to other radial cuts around the sunspot, along the plume shows the longest periods (∼7 minutes) and the most distinct tracks. Bright dots at the plume base are mostly circular and do not show elongations from a fixed origin, in contrast to jetlets and previously reported penumbral dots. We do not find high-speed, repeated downflows along the plume, and the plume appears to brighten coherently along its length. Our analysis suggests that jetlets and downflows are not a necessary component of this plume’s formation, and that mechanisms for plume formation could be dependent on magnetic topology and the chromospheric wave field. 
    more » « less
  2. Context. With the development of large-aperture ground-based solar telescopes and the adaptive optics system, the resolution of the obtained solar images has become increasingly higher. In the high-resolution photospheric images, the fine structures (umbra, penumbra, and light bridge) of sunspots can be observed clearly. The research of the fine structures of sunspots can help us to understand the evolution of solar magnetic fields and to predict eruption phenomena that have significant impacts on the Earth, such as solar flares. Therefore, algorithms for automatically segmenting the fine structures of sunspots in high-resolution solar image will greatly facilitate the study of solar physics. Aims. This study is aimed at proposing an automatic fine-structure segmentation method for sunspots that is accurate and requires little time. Methods. We used the superpixel segmentation to preprocess a solar image. Next, the intensity information, texture information, and spatial location information were used as features. Based on these features, the Gaussian mixture model was used to cluster different superpixels. According to different intensity levels of the umbra, penumbra, and quiet photosphere, the clusters were classified into umbra, penumbra, and quiet-photosphere areas. Finally, the morphological method was used to extract the light-bridge area. Results. The experimental results show that the method we propose can segment the fine structures of sunspots quickly and accurately. In addition, the method can process high-resolution solar images from different solar telescopes and generates a satisfactory segmentation performance. 
    more » « less
  3. Abstract Delta (δ) sunspots sometimes host fast photospheric flows along the central magnetic polarity inversion line (PIL). Here we study the strong Doppler shift signature in the central penumbral light bridge of solar active region NOAA 12673. Observations from the Helioseismic and Magnetic Imager (HMI) indicate highly sheared and strong magnetic fields. Large Doppler shifts up to 3.2 km s−1appeared during the formation of the light bridge and persisted for about 16 hr. A new velocity estimator, called DAVE4VMwDV, reveals fast converging and shearing motion along the PIL from HMI vector magnetograms, and recovers the observed Doppler signal much better than an old version of the algorithm. The inferred velocity vectors are largely (anti-)parallel to the inclined magnetic fields, suggesting that the observed Doppler shift contains a significant contribution from the projected field-aligned flows. High-resolution observations from the Hinode/Spectro-Polarimeter further exhibit a clear correlation between the Doppler velocity and the cosine of the magnetic inclination, which is in agreement with HMI results and consistent with a field-aligned flow of about 9.6 km s−1. The complex Stokes profiles suggest significant gradients of physical variables along the line of sight. We discuss the implications on theδ-spot magnetic structure and the flow-driving mechanism. 
    more » « less
  4. Abstract Recurrent chromospheric fan-shaped jets highlight the highly dynamic nature of the solar atmosphere. They have been named as “light walls” or “peacock jets” in high-resolution observations. In this study, we examined the underlying mechanisms responsible for the generation of recurrent chromospheric fan-shaped jets utilizing data from the Goode Solar Telescope at Big Bear Solar Observatory, along with data from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory. These jets appear as dark elongated structures in Hαwing images, persist for over an hour, and are located in the intergranular lanes between a pair of same-polarity sunspots. Our analysis reveals that magnetic flux cancellation at the jet base plays a crucial role in their formation. HMI line-of-sight magnetograms show a gradual decrease in opposite-polarity fluxes spanning the sequence of jets in Hα−0.8 Å images, suggesting that recurrent magnetic reconnection, likely driven by recurrent miniature flux-rope eruptions that are built up and triggered by flux cancellation, powers these jets. Additionally, magnetic field extrapolations reveal a 3D magnetic null-point topology at the jet formation site ∼1.25 Mm height. Furthermore, we observed strong brightening in the AIA 304 Å channel above the neutral line. Based on our observations and extrapolation results, we propose that these recurrent chromospheric fan-shaped jets align with the minifilament eruption model previously proposed for coronal jets. Though our study focuses on fan-shaped jets in between same-polarity sunspots, a similar mechanism might be responsible for light-bridge-associated fan-shaped jets. 
    more » « less
  5. Abstract We report on high-resolution observations of recurrent fan-like jets by the Goode Solar Telescope in multiple wavelengths inside a sunspot group. The dynamics behavior of the jets is derived from the H α line profiles. Quantitative values for one well-identified event have been obtained, showing a maximum projected velocity of 42 km s −1 and a Doppler shift of the order of 20 km s −1 . The footpoints/roots of the jets have a lifted center on the H α line profile compared to the quiet Sun, suggesting a long-lasting heating at these locations. The magnetic field between the small sunspots in the group shows a very high resolution pattern with parasitic polarities along the intergranular lanes accompanied by high-velocity converging flows (4 km s −1 ) in the photosphere. Magnetic cancellations between the opposite polarities are observed in the vicinity of the footpoints of the jets. Along the intergranular lanes horizontal magnetic field around 1000 G is generated impulsively. Overall, all the kinetic features at the different layers through the photosphere and chromosphere favor a convection-driven reconnection scenario for the recurrent fan-like jets and evidence a site of reconnection between the photosphere and chromosphere corresponding to the intergranular lanes. 
    more » « less