Microstreams are fluctuations in the solar wind speed and density associated with polarity-reversing folds in the magnetic field (also denoted switchbacks). Despite their long heritage, the origin of these microstreams/switchbacks remains poorly understood. For the first time, we investigated periodicities in microstreams during Parker Solar Probe (PSP) Encounter 10 to understand their origin. Our analysis was focused on the inbound corotation interval on 2021 November 19–21, while the spacecraft dove toward a small area within a coronal hole (CH). Solar Dynamics Observatory remote-sensing observations provide rich context for understanding the PSP in situ data. Extreme ultraviolet images from the Atmospheric Imaging Assembly reveal numerous recurrent jets occurring within the region that was magnetically connected to PSP during intervals that contained microstreams. The periods derived from the fluctuating radial velocities in the microstreams (approximately 3, 5, 10, and 20 minutes) are consistent with the periods measured in the emission intensity of the jetlets at the base of the CH plumes, as well as in larger coronal jets and in the plume fine structures. Helioseismic and Magnetic Imager magnetograms reveal the presence of myriad embedded bipoles, which are known sources of reconnection-driven jets on all scales. Simultaneous enhancements in the PSP proton flux and ionic composition during the microstreams further support the connection with jetlets and jets. In keeping with prior observational and numerical studies of impulsive coronal activity, we conclude that quasiperiodic jets generated by interchange/breakout reconnection at CH bright points and plume bases are the most likely sources of the microstreams/switchbacks observed in the solar wind.
more »
« less
This content will become publicly available on July 18, 2026
Bright Dots and Coronal Plume Formation in Sunspot Penumbra
Abstract Coronal plumes are narrow, collimated structures that are primarily viewed above the solar poles and in coronal holes in the extreme ultraviolet, but also in sunspots. Open questions remain about plume formation, including the role of small-scale transients and whether plumes embedded in different magnetic field configurations have similar formation mechanisms. We report on coordinated Solar Orbiter/Extreme Ultraviolet Imager (EUI), Interface Region Imaging Spectrograph, and Solar Dynamics Observatory observations of the formation of a plume in sunspot penumbra in 2022 March. During this observation, Solar Orbiter was positioned near the Earth–Sun line and EUI observed at a 5 s cadence with a spatial scale of 185 km pixel−1in the solar corona. We observe fine-scale dots at various locations in the sunspot, but the brightest and highest density of dots is at the plume base. Space-time maps along the plume axis show parabolic and V-shaped patterns, and we conclude that some of these dots are possible signatures of magneto-acoustic shocks. Compared to other radial cuts around the sunspot, along the plume shows the longest periods (∼7 minutes) and the most distinct tracks. Bright dots at the plume base are mostly circular and do not show elongations from a fixed origin, in contrast to jetlets and previously reported penumbral dots. We do not find high-speed, repeated downflows along the plume, and the plume appears to brighten coherently along its length. Our analysis suggests that jetlets and downflows are not a necessary component of this plume’s formation, and that mechanisms for plume formation could be dependent on magnetic topology and the chromospheric wave field.
more »
« less
- Award ID(s):
- 2307505
- PAR ID:
- 10630431
- Publisher / Repository:
- ApJ
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 988
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 133
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Plumes are bright structures in coronal holes extending from the solar surface into the corona and are considered as a possible source of the solar wind. Plumes are thought to be rooted in strong unipolar photospheric flux patches (network/plage region). The magnetic activities at the base of plumes may play a crucial role in producing outflows and propagating disturbances (PDs). However, the role of photospheric/chromospheric activities (e.g., jets/spicules) at the base of plumes and their connection to PDs is poorly understood. Using high-resolution observations of a plume taken on 2020 July 23 with the 1.6 m Goode Solar Telescope (GST), Interface Region Imaging Spectrograph (IRIS), and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory, we analyzed chromospheric/transition region activities at the base of the plume and their connection to outflows/PDs in the plume. The GST Visible Imaging Spectrometer images reveal repetitive spicules with blueshifted emission (pseudo-Doppler maps) at the plume’s footpoint. In addition, the photospheric magnetograms provide evidence of mixed polarities at the base of the plume. The IRIS Mg ii k Dopplergrams show strong blueshifted emission (∼50 km s −1 ) and a high brightness temperature (Mg ii k2 line) at the footpoint of the plume. The long-period PDs ( P ≈ 20–25 minutes) along the plume (AIA 171 Å) match the periodicity of spicules in the chromospheric images, suggesting a close connection between the spicules and the PDs. We suggest that the interchange reconnection between the closed and open flux of the coronal bright point at the plume’s footpoint is the most likely candidate to produce upflows and associated PDs along the plume.more » « less
-
Abstract Sunspot light bridges (LBs) exhibit a wide range of short-lived phenomena in the chromosphere and transition region. In contrast, we use here data from the Multi-Application Solar Telescope (MAST), the Interface Region Imaging Spectrograph (IRIS), Hinode, the Atmospheric Imaging Assembly (AIA), and the Helioseismic and Magnetic Imager (HMI) to analyze the sustained heating over days in an LB in a regular sunspot. Chromospheric temperatures were retrieved from the MAST Caiiand IRIS Mgiilines by nonlocal thermodynamic equilibrium inversions. Line widths, Doppler shifts, and intensities were derived from the IRIS lines using Gaussian fits. Coronal temperatures were estimated through the differential emission measure, while the coronal magnetic field was obtained from an extrapolation of the HMI vector field. At the photosphere, the LB exhibits a granular morphology with field strengths of about 400 G and no significant electric currents. The sunspot does not fragment, and the LB remains stable for several days. The chromospheric temperature, IRIS line intensities and widths, and AIA 171 and 211 Å intensities are all enhanced in the LB with temperatures from 8000 K to 2.5 MK. Photospheric plasma motions remain small, while the chromosphere and transition region indicate predominantly redshifts of 5–20 km s−1with occasional supersonic downflows exceeding 100 km s−1. The excess thermal energy over the LB is about 3.2 × 1026erg and matches the radiative losses. It could be supplied by magnetic flux loss of the sunspot (7.5 × 1027erg), kinetic energy from the increase in the LB width (4 × 1028erg), or freefall of mass along the coronal loops (6.3 × 1026erg).more » « less
-
Abstract We present EUV solar observations showing evidence for omnipresent jetting activity driven by small-scale magnetic reconnection at the base of the solar corona. We argue that the physical mechanism that heats and drives the solar wind at its source is ubiquitous magnetic reconnection in the form of small-scale jetting activity (a.k.a. jetlets). This jetting activity, like the solar wind and the heating of the coronal plasma, is ubiquitous regardless of the solar cycle phase. Each event arises from small-scale reconnection of opposite-polarity magnetic fields producing a short-lived jet of hot plasma and Alfvén waves into the corona. The discrete nature of these jetlet events leads to intermittent outflows from the corona, which homogenize as they propagate away from the Sun and form the solar wind. This discovery establishes the importance of small-scale magnetic reconnection in solar and stellar atmospheres in understanding ubiquitous phenomena such as coronal heating and solar wind acceleration. Based on previous analyses linking the switchbacks to the magnetic network, we also argue that these new observations might provide the link between the magnetic activity at the base of the corona and the switchback solar wind phenomenon. These new observations need to be put in the bigger picture of the role of magnetic reconnection and the diverse form of jetting in the solar atmosphere.more » « less
-
Abstract A series of solar energetic electron (SEE) events was observed from 2022 November 9 to November 15 by Solar Orbiter, STEREO-A, and near-Earth spacecraft. At least 32 SEE intensity enhancements at energies >10 keV were clearly distinguishable in Solar Orbiter particle data, with 13 of them occurring on November 11. Several of these events were accompanied by ≲10 MeV proton and ≲2 MeV nucleon−1heavy-ion intensity enhancements. By combining remote-sensing and in situ data from the three viewpoints (Solar Orbiter and STEREO-A were ∼20° and ∼15° east of Earth, respectively), we determine that the origin of this rapid succession of events was a series of brightenings and jetlike eruptions detected in extreme ultraviolet (EUV) observations from the vicinity of two active regions. We find a close association between these EUV phenomena, the occurrence of hard X-ray flares, type III radio bursts, and the release of SEEs. For the most intense events, usually associated with extended EUV jets, the distance between the site of these solar eruptions and the estimated magnetic connectivity regions of each spacecraft with the Sun did not prevent the arrival of electrons at the three locations. The capability of jets to drive coronal fronts does not necessarily imply the observation of an SEE event. Two peculiar SEE events on November 9 and 14, observed only at electron energies ≲50 keV but rich in ≲1 MeV nucleon−1heavy ions, originated from slow-rising confined EUV emissions, for which the process resulting in energetic particle release to interplanetary space is unclear.more » « less
An official website of the United States government
