skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The functional logic of odor information processing in the Drosophila antennal lobe
Recent advances in molecular transduction of odorants in the Olfactory Sensory Neurons (OSNs) of theDrosophilaAntenna have shown that theodorant object identityis multiplicatively coupled with theodorant concentration waveform. The resulting combinatorial neural code is a confounding representation of odorant semantic information (identity) and syntactic information (concentration). To distill the functional logic of odor information processing in the Antennal Lobe (AL) a number of challenges need to be addressed including 1) how is the odorantsemantic informationdecoupled from thesyntactic informationat the level of the AL, 2) how are these two information streams processed by the diverse AL Local Neurons (LNs) and 3) what is the end-to-end functional logic of the AL? By analyzing single-channel physiology recordings at the output of the AL, we found that the Projection Neuron responses can be decomposed into aconcentration-invariantcomponent, and two transient components boosting the positive/negative concentration contrast that indicate onset/offset timing information of the odorant object. We hypothesized that the concentration-invariant component, in the multi-channel context, is the recovered odorant identity vector presented between onset/offset timing events. We developed a model of LN pathways in the Antennal Lobe termed the differential Divisive Normalization Processors (DNPs), which robustly extract thesemantics(the identity of the odorant object) and the ON/OFF semantic timing events indicating the presence/absence of an odorant object. For real-time processing with spiking PN models, we showed that the phase-space of the biological spike generator of the PN offers an intuit perspective for the representation of recovered odorant semantics and examined the dynamics induced by the odorant semantic timing events. Finally, we provided theoretical and computational evidence for the functional logic of the AL as a robustON-OFF odorant object identity recovery processoracross odorant identities, concentration amplitudes and waveform profiles.  more » « less
Award ID(s):
2024607
PAR ID:
10483131
Author(s) / Creator(s):
; ;
Editor(s):
Morozov, Alexandre V.
Publisher / Repository:
PLOS
Date Published:
Journal Name:
PLOS Computational Biology
Volume:
19
Issue:
4
ISSN:
1553-7358
Page Range / eLocation ID:
e1011043
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fiala, André; Meltzer, Hagar; Schleyer, Michael; Turrel, Oriane; Widmann, Annekathrin (Ed.)
    Associative memory in the Mushroom Body of the fruit fly brain depends on the encoding and processing of odorants in the first three stages of the Early Olfactory System: the Antenna, the Antennal Lobe and the Mushroom Body Calyx. The Kenyon Cells (KCs) of the Calyx provide the Mushroom Body compartments the identity of pure and odorant mixtures encoded as a train of spikes. Characterizing the code underlying the KC spike trains is a major challenge in neuroscience. To address this challenge we start by explicitly modeling the space of odorants using constructs of both semantic and syntactic information. Odorant semantics concerns the identity of odorants while odorant syntactics pertains to their concentration amplitude. These odorant attributes are multiplicatively coupled in the process of olfactory transduction. A key question that early olfactory systems must address is how to disentangle the odorant semantic information from the odorant syntactic information. To address the untanglement we devised an Odorant Encoding Machine (OEM) modeling the first three stages of early olfactory processing in the fruit fly brain. Each processing stage is modeled by Divisive Normalization Processors (DNPs). DNPs are spatio-temporal models of canonical computation of brain circuits. The end-to-end OEM is constructed as cascaded DNPs. By extensively modeling and characterizing the processing of pure and odorant mixtures in the Calyx, we seek to answer the question of its functional significance. We demonstrate that the DNP circuits in the OEM combinedly reduce the variability of the Calyx response to odorant concentration, thereby separating odorant semantic information from syntactic information. We then advance a code, called first spike sequence code, that the KCs make available at the output of the Calyx. We show that the semantics of odorants can be represented by this code in the spike domain and is ready for easy memory access in the Mushroom Body compartments. 
    more » « less
  2. Abstract Sensory stimuli evoke spiking activities patterned across neurons and time that are hypothesized to encode information about their identity. Since the same stimulus can be encountered in a multitude of ways, how stable or flexible are these stimulus-evoked responses? Here we examine this issue in the locust olfactory system. In the antennal lobe, we find that both spatial and temporal features of odor-evoked responses vary in a stimulus-history dependent manner. The response variations are not random, but allow the antennal lobe circuit to enhance the uniqueness of the current stimulus. Nevertheless, information about the odorant identity is conf ounded due to this contrast enhancement computation. Notably, predictions from a linear logical classifier (OR-of-ANDs) that can decode information distributed in flexible subsets of neurons match results from behavioral experiments. In sum, our results suggest that a trade-off between stability and flexibility in sensory coding can be achieved using a simple computational logic. 
    more » « less
  3. The Drosophila brain has only a fraction of the number of neurons of higher organisms such as mice and humans. Yet the sheer complexity of its neural circuits recently revealed by large connectomics datasets suggests that computationally modeling the function of fruit fly brain circuits at this scale poses significant challenges. To address these challenges, we present here a programmable ontology that expands the scope of the current Drosophila brain anatomy ontologies to encompass the functional logic of the fly brain. The programmable ontology provides a language not only for modeling circuit motifs but also for programmatically exploring their functional logic. To achieve this goal, we tightly integrated the programmable ontology with the workflow of the interactive FlyBrainLab computing platform. As part of the programmable ontology, we developed NeuroNLP++, a web application that supports free-form English queries for constructing functional brain circuits fully anchored on the available connectome/synaptome datasets, and the published worldwide literature. In addition, we present a methodology for including a model of the space of odorants into the programmable ontology, and for modeling olfactory sensory circuits of the antenna of the fruit fly brain that detect odorant sources. Furthermore, we describe a methodology for modeling the functional logic of the antennal lobe circuit consisting of a massive number of local feedback loops, a characteristic feature observed across Drosophila brain regions. Finally, using a circuit library, we demonstrate the power of our methodology for interactively exploring the functional logic of the massive number of feedback loops in the antennal lobe. 
    more » « less
  4. Understanding olfactory processing in insects requires characterizing the complex dynamics and connectivity of the first olfactory relay - antennal lobe (AL). We leverage in vivo electrophysiology to train recurrent neural network (RNN) model of the locust AL, inferring the underlying connectivity and temporal dynamics. The RNN comprises 830 projection neurons (PNs) and 300 local neurons (LNs), replicating the locust AL anatomy. The trained network reveals sparse connectivity, with different connection densities between LNs and PNs and no PN-PN connections, consistent with in vivo data. The learned time constants predict slower LN dynamics and diverse PN response patterns, with low and high time constants correlating with early and late odor-evoked activity, as reported in vivo. Our approach demonstrates the utility of biologically-constrained RNNs in inferring circuit properties from empirical data, providing insights into mechanisms of odor coding in the AL. 
    more » « less
  5. Abstract Proleptic (or prothetic) objects (Majaliwa remembered about Samson that he’s sick) present a particular puzzle because they appear to instantiate an unconstrained cross-clausal dependency between the proleptic object (Samson) and a correlate (he). The current analytical approach to prolepsis is relies on a syntactic mechanism of treating the embedded clause as a predicate, derived by merging a null operator which unselectively binds the correlate. This approach faces a number of known empirical challenges. Moreover, this work does not meaningfully engage with any of the recent semantic innovations in our understanding of embedded clauses (Kratzer 2006. Decomposing attitude verbs. Available at:http://semanticsarchive.net/Archive/DcwY2JkM/attitude-verbs2006.pdf). I offer an alternative to the CP-predicate approach, adopting three (semi-)independently motivated ideas concerning (i) the syntax of cross-clausal dependencies in Lohninger et al. (2022. From prolepsis to hyperraising.Philosophies7(32)), (ii) the semantics of embedded clauses in Kratzer (2006. Decomposing attitude verbs. Available at:http://semanticsarchive.net/Archive/DcwY2JkM/attitude-verbs2006.pdf)/Moulton (2009. Not moving clauses: Connectivity in clausal arguments.Syntax16(3). 250–291), and (iii) the semantics ofaboutin Rawlins (2013. About about.Proceedings of SALT23. 336–357)/Onea and Mardale (2020. From topic to object, grammaticalization differential object marking in Romanian.Canadian Journal of Linguistics/Revue Canadienne de Linguistique65(3). 350–392). I argue that proleptic objects are complex-NPs, roughly,the thing about Samson. The somewhat particular properties of prolepsis are natural consequences of these combined ideas. I further present empirical evidence from Japanese that the complex-NP analysis is on the right track. This analysis deepens our understanding of prolepsis by including both semantic and syntactic factors. 
    more » « less