The Madden–Julian Oscillation (MJO) is a planetary-scale weather system that creates a 30–60 day oscillation in zonal winds and precipitation in the tropics. Its envelope of enhanced rainfall forms over the Indian Ocean and moves slowly eastward before dissipating near the Date Line. The MJO modulates tropical cyclone (TC) genesis, intensity, and landfall in the Indian, Pacific, and Atlantic Oceans. This study examines the mechanisms by which the MJO alters TC genesis. In particular, MJO circulations are partitioned into Kelvin and Rossby waves for each of the developing, mature, and dissipating stages of the convective envelope, and locations of TC genesis are related to these circulations. Throughout the MJO’s convective life cycle, TC genesis is inhibited to the east of the convective envelope, and enhanced just west of the convective envelope. The inhibition of TC genesis to the east of the MJO is largely due to vertical motion associated with the Kelvin wave circulation, as is the enhancement of TC genesis just west of the MJO during the developing stage. During the mature and dissipating stages, the MJO’s Rossby gyres intensify, creating regions of low-level vorticity, favoring TC genesis to its west. Over the 36-year period considered here, the MJO modulation of TC genesis increases due to the intensification of the MJO’s Kelvin wave circulation.
more »
« less
Potential Strengthening of the Madden–Julian Oscillation Modulation of Tropical Cyclogenesis
A typical Madden–Julian Oscillation (MJO) generates a large region of enhanced rainfall over the equatorial Indian Ocean that moves slowly eastward into the western Pacific. Tropical cyclones often form on the poleward edges of the MJO moist-convective envelope, frequently impacting both southeast Asia and northern Australia, and on occasion Eastern Africa. This paper addresses the question of whether these MJO-induced tropical cyclones will become more numerous in the future as the oceans warm. The Lagrangian Atmosphere Model (LAM), which has been carefully tuned to simulate realistic MJO circulations, is used to study the sensitivity of MJO modulation of tropical cyclogenesis (TCG) to global warming. A control simulation for the current climate is compared with a simulation with enhanced radiative forcing consistent with that for the latter part of the 21st century under Shared Socioeconomic Pathway (SSP) 585. The LAM control run reproduces the observed MJO modulation of TCG, with about 70 percent more storms forming than monthly climatology predicts within the MJO’s convective envelope. The LAM SSP585 run suggests that TCG enhancement within the convective envelope could reach 170 percent of the background value under a high greenhouse gas emissions scenario, owing to a strengthening of Kelvin and Rossby wave components of the MJO’s circulation.
more »
« less
- Award ID(s):
- 2140281
- PAR ID:
- 10561892
- Publisher / Repository:
- mdpi.com
- Date Published:
- Journal Name:
- Atmosphere
- Volume:
- 15
- Issue:
- 6
- ISSN:
- 2073-4433
- Page Range / eLocation ID:
- 655
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Madden–Julian Oscillation (MJO) is a large-scale tropical weather system that generates heavy rainfall over the equatorial Indian and western Pacific Oceans on a 40–50 day cycle. Its circulation propagates eastward around the entire world and impacts tropical cyclone genesis, monsoon onset, and mid-latitude flooding. This study examines the mechanism of the MJO in the Lagrangian atmospheric model (LAM), which has been shown to simulate the MJO accurately, and which predicts that MJO circulations will intensify as oceans warm. The LAM MJO’s first baroclinic circulation is projected onto a Kelvin wave leaving a residual that closely resembles a Rossby wave. The contribution of each wave type to moisture and moist enthalpy budgets is assessed. While the vertical advection of moisture by the Kelvin wave accounts for most of the MJO’s precipitation, this wave also exports a large amount of dry static energy, so that in total, it reduces the column integrated moist enthalpy during periods of heavy precipitation. In contrast, the Rossby wave’s horizontal circulation builds up moisture prior to the most intense convection, and its surface wind perturbations enhance evaporation near the center of MJO convection. Surface fluxes associated with the Kelvin wave help to maintain its circulation outside of the MJO’s convectively active region.more » « less
-
The Impact of the Madden‐Julian Oscillation on the Formation of the Arabian Sea Monsoon Onset VortexAbstract During certain years, a synoptic scale vortex called the monsoon onset vortex (MOV) forms within the northward advancing zone of precipitating convection over the Arabian Sea. The MOV does not form each year and the reason is unclear. Since the Madden‐Julian Oscillation (MJO) is known to modulate convection and tropical cyclones in the tropics, we examined its role in the formation of the MOV. While the convective and transition phases of the MJO do not always lead to MOV formation, the suppressed phase of the MJO hinders the formation of the MOV more consistently. This asymmetric relationship between the MJO and MOV can be partially explained by the modulation of the large‐scale environment, measured by a tropical cyclone genesis index. It also suggests that the Arabian Sea is generally near a critical state that is favorable for MOV formation during the monsoon onset period.more » « less
-
Abstract This study investigates why the major convective envelope of the Madden–Julian oscillation (MJO) detours to the south of the Maritime Continent (MC) only during boreal winter [December–March (DJFM)]. To examine processes affecting this MJO detour, the MJO-related variance of precipitation and column-integrated moisture anomalies in DJFM are compared with those in the seasons before [October–November (ON)] and after [April–May (AM)]. While MJO precipitation variance is much higher in the southern MC (SMC) during DJFM than in other seasons, the MJO moisture variance is comparable among the seasons, implying that the seasonal locking of the MJO’s southward detour cannot be explained by the magnitude of moisture anomalies alone. The higher precipitation variance in the SMC region is partly explained by the much higher moisture sensitivity of precipitation in DJFM than in other seasons, resulting in a more efficient conversion of anomalous moisture to anomalous precipitation. DJFM is also distinguishable from the other seasons by stronger positive wind–evaporation feedback onto MJO precipitation anomalies due to the background westerly wind in the lower troposphere. It is found that the seasonal cycle of moisture–precipitation coupling and wind–evaporation feedback in the SMC region closely follows that of the Australian monsoon, which is active exclusively in DJFM. Our results suggest that the MJO’s southward detour in the MC is seasonally locked because it occurs preferentially when the Australian monsoon system produces a background state that is favorable for MJO development in the SMC.more » « less
-
The Madden–Julian oscillation (MJO) excites strong variations in extratropical geopotential heights that modulate extratropical weather, making the MJO an important predictability source on subseasonal to seasonal time scales (S2S). Previous research demonstrates a strong similarity of teleconnection patterns across MJO events for certain MJO phases (i.e., pattern consistency) and increased model ensemble agreement during these phases that is beneficial for extended numerical weather forecasts. However, the MJO’s ability to modulate extratropical weather varies greatly on interannual time scales, which brings extra uncertainty in leveraging the MJO for S2S prediction. Few studies have investigated the mechanisms responsible for variations in the consistency of MJO tropical–extratropical teleconnections on interannual time scales. This study uses reanalysis data, ensemble simulations of a linear baroclinic model, and a Rossby wave ray tracing algorithm to demonstrate that two mechanisms largely determine the interannual variability of MJO teleconnection consistency. First, the meridional shift of stationary Rossby wave ray paths indicates increases (decreases) in the MJO’s extratropical modulation during La Niña (El Niño) years. Second, a previous study proposed that the constructive interference of Rossby wave signals caused by a dipole Rossby wave source pattern across the subtropical jet during certain MJO phases produces a consistent MJO teleconnection. However, this dipole feature is less clear in both El Niño and La Niña years due to the extension and contraction of MJO convection, respectively, which would decrease the MJO’s influence in the extratropics. Hence, considering the joint influence of the basic state and MJO forcing, this study suggests a diminished potential to leverage the MJO for S2S prediction in El Niño years.more » « less
An official website of the United States government

