skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Impacts of sea ice melting procedures on measurements of microbial community structure
Microorganisms play critical roles in sea ice biogeochemical processes. However, microbes living within sea ice can be challenging to sample for scientific study. Because most techniques for microbial analysis are optimized for liquid samples, sea ice samples are typically melted first, often applying a buffering method to mitigate osmotic lysis. Here, we tested commonly used melting procedures on three different ice horizons of springtime, first year, land-fast Arctic sea ice to investigate potential methodological impacts on resulting measurements of cell abundance, photophysiology, and microbial community structure as determined by 16S and 18S rRNA gene amplicon sequencing. Specifically, we compared two buffering methods using NaCl solutions (“seawater,” melting the ice in an equal volume of 35-ppt solution, and “isohaline,” melting with a small volume of 250-ppt solution calculated to yield meltwater at estimated in situ brine salinity) to direct ice melting (no buffer addition) on both mechanically “shaved” and “non-shaved” samples. Shaving the ice shortened the melting process, with no significant impacts on the resulting measurements. The seawater buffer was best at minimizing cell lysis for this ice type, retaining the highest number of cells and chlorophyll a concentration. Comparative measurements of bacterial (16S) community structure highlighted ecologically relevant subsets of the community that were significantly more abundant in the buffered samples. The results for eukaryotic (18S) community structure were less conclusive. Taken together, our results suggest that an equivalent-volume seawater-salinity buffered melt is best at minimizing cell loss due to osmotic stress for springtime Arctic sea ice, but that either buffer will reduce bias in community composition when compared to direct melting. Overall, these findings indicate potential methodological biases that should be considered before developing a sea ice melting protocol for microbiological studies and afterwards, when interpreting biogeochemical or ecological meaning of the results.  more » « less
Award ID(s):
1821911
PAR ID:
10483220
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
UC Press
Date Published:
Journal Name:
Elementa: Science of the Anthropocene
Volume:
10
Issue:
1
ISSN:
2325-1026
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This metadata links to 16S and 18S rRNA amplicon data (raw sequence reads, NCBI Accession PRJNA895866) for seawater, sea ice, meltwater, and experimental samples from the Central Arctic Ocean collected during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition in which the RV (Research Vessel) Polarstern was tethered to drifting sea ice from October 2019 to September 2020. Seawater samples were collected from the water column using a CTD (conductivity-temperature-depth) rosette or underway seawater tap during legs 1, 2, 3, 4, and 5 of the expedition. Sea ice samples were collected via coring (FYI (first-year ice), SYI (second-year ice)) or scooped with a saw and/or sieve (new ice formation) during legs 1, 3, 4, and 5 of the expedition. Summer meltwater was from surface layers within leads or melt ponds and was collected using pump systems during legs 4 and 5 of the expedition. Experimental samples were filtered and processed post nutrient addition, stable isotope, or elevated methane incubations to pair community structure with biogeochemical measurements. Original data published with the National Center for Biotechnology Information: https://www.ncbi.nlm.nih.gov/bioproject/895866 ; Please contact data creators before use. 
    more » « less
  2. The Arctic is rapidly warming and has transitioned to thinner sea ice which fractures, producing leads. Sea ice loss is expected to be increasing sea spray aerosol production in the High Arctic. Few studies have investigated Arctic sea spray aerosol (SSA) produced from open ocean, leads, and melt ponds, characterized by varied salinity, microbial community, and organic composition. The concentrations, size distributions, single-particle composition, and ice-nucleating activity of the SSA experimentally-generated were measured and compared to the chemical and biological properties of the surface waters. A marine aerosol reference tank (MART) was deployed aboard the Swedish Icebreaker Oden to the high Arctic Ocean during August – September 2018 to study SSA generated from locally-collected surface water. Surface water salinity, chlorophyll-a, organic carbon, nitrogen, and microbial community composition (18s and 16s DNA-derived, flow cytometry of nano- and picoplankton) data are submitted. Experimental aerosol data submitted include type, size, mole ratio, Raman spectra, Raman type, and ice nucleating particles. High resolution Fourier Transform Ion Cyclotron Resonance mass spectrometry (FTICR-MS) data for surface water and experimentally-generated aerosol dissolved organic matter are included . 
    more » « less
  3. Abstract Seasonal cycles within the marginal ice zones in polar regions include large shifts in temperature and salinity that strongly influence microbial abundance and physiology. However, the combined effects of concurrent temperature and salinity change on microbial community structure and biochemical composition during transitions between seawater and sea ice are not well understood. Coastal marine communities along the western Antarctic Peninsula were sampled and surface seawater was incubated at combinations of temperature and salinity mimicking the formation (cold, salty) and melting (warm, fresh) of sea ice to evaluate how these factors may shape community composition and particulate metabolite pools during seasonal transitions. Bacterial and algal community structures were tightly coupled to each other and distinct across sea-ice, seawater, and sea-ice-meltwater field samples, with unique metabolite profiles in each habitat. During short-term (approximately 10-day) incubations of seawater microbial communities under different temperature and salinity conditions, community compositions changed minimally while metabolite pools shifted greatly, strongly accumulating compatible solutes like proline and glycine betaine under cold and salty conditions. Lower salinities reduced total metabolite concentrations in particulate matter, which may indicate a release of metabolites into the labile dissolved organic matter pool. Low salinity also increased acylcarnitine concentrations in particulate matter, suggesting a potential for fatty acid degradation and reduced nutritional value at the base of the food web during freshening. Our findings have consequences for food web dynamics, microbial interactions, and carbon cycling as polar regions undergo rapid climate change. 
    more » « less
  4. These data were extracted from water samples collected from R/V Sikuliaq hydrographic stations during the 2023 University National Oceanographic Laboratory System (UNOLS) and Arctic Icebreaker Coordinating Committee (AICC) sponsored Arctic Chief Scientist Cruise. The primary goal of this program is to provide hands on training for early career researchers to gain skills and confidence in organizing and leading polar scientific research expeditions. The 2023 expedition (SKQ202309T; June 6–12) followed a coastal Alaska cruise track through the Aleutian Islands and across the Bering Sea. This dataset was specifically collected to provide a survey of microbial community composition and metabolic activity for this cruise transect. At eight stations, seawater microbial community composition was measured broadly using amplicon gene sequencing (16S/18S ribosomal ribonucleic acid (rRNA) gene and Synechcoccus internal transcribed spacer (ITS) region) and metagenomic sequencing (data available through the National Center for Biotechnology Information; NCBI BioProject ID PRJNA1240040). At three stations, oxygen utilization assays were additionally used to measure rates of net community production and community respiration (data provided here). 
    more » « less
  5. Abstract Sandy sediment beaches covering 70% of non‐ice‐covered coastlines are important ecosystems for nutrient cycling along the land‐ocean continuum. Subterranean estuaries (STEs), where groundwater and seawater meet, are hotspots for biogeochemical cycling within sandy beaches. The STE microbial community facilitates biogeochemical reactions, determining the fate of nutrients, including nitrogen (N), supplied by groundwater. Nitrification influences the fate of N, oxidising reduced dissolved inorganic nitrogen (DIN), making it available for N removal. We used metabarcoding of 16S rRNA genes and quantitative PCR (qPCR) of ammonia monooxygenase (amoA) genes to characterise spatial and temporal variation in STE microbial community structure and nitrifying organisms. We examined nitrifier diversity, distribution and abundance to determine how geochemical measurements influenced their distribution in STEs. Sediment microbial communities varied with depth (p‐value = 0.001) and followed geochemical gradients in dissolved oxygen (DO), salinity, pH, dissolved inorganic carbon and DIN. Genetic potential for nitrification in the STE was evidenced by qPCR quantification ofamoAgenes. Ammonia oxidiser abundance was best explained by DIN, DO and pH. Our results suggest that geochemical gradients are tightly linked to STE community composition and nitrifier abundance, which are important to determine the fate and transport of groundwater‐derived nutrients to coastal waters. 
    more » « less