skip to main content


Title: Compositional Safety LTL Synthesis
Reactive synthesis holds the promise of generating automatically a verifiably correct program from a high-level specification. A popular such specification language is Linear Temporal Logic (LTL). Unfortunately, synthesizing programs from general LTL formulas, which relies on first constructing a game arena and then solving the game, does not scale to large instances. The specifications from practical applications are usually large conjunctions of smaller LTL formulas, which inspires existing compositional synthesis approaches to take advantage of this structural information. The main challenge here is that they solve the game only after obtaining the game arena, the most computationally expensive part in the procedure. In this work, we propose a compositional synthesis technique to tackle this difficulty by synthesizing a program for each small conjunct separately and composing them one by one. While this approach does not work for general LTL formulas, we show here that it does work for Safety LTL formulas, a popular and important fragment of LTL. While we have to compose all the programs of small conjuncts in the worst case, we can prune the intermediate programs to make later compositions easier and immediately conclude unrealizable as soon as some part of the specification is found unrealizable. By comparing our compositional approach with a portfolio of all other approaches, we observed that our approach was able to solve a notable number of instances not solved by others. In particular, experiments on scalable conjunctive benchmarks showed that our approach scale well and significantly outperform current Safety LTL synthesis techniques. We conclude that our compositional approach is an important contribution to the algorithmic portfolio of Safety LTL synthesis.  more » « less
Award ID(s):
1830549
NSF-PAR ID:
10483235
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Lal, A; Tonetta, S.
Publisher / Repository:
Springer
Date Published:
Journal Name:
Verified Software. Theories, Tools and Experiments.. VSTTE 2022
Format(s):
Medium: X
Location:
Trento, Italy
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Linear Temporal Logic (LTL) synthesis aims at automatically synthesizing a program that complies with desired properties expressed in LTL. Unfortunately it has been proved to be too difficult computationally to perform full LTL synthesis. There have been two success stories with LTL synthesis, both having to do with the form of the specification. The first is the GR(1) approach: use safety conditions to determine the possible transitions in a game between the environment and the agent, plus one powerful notion of fairness, Generalized Reactivity(1), or GR(1). The second, inspired by AI planning, is focusing on finite-trace temporal synthesis, with LTLf (LTL on finite traces) as the specification language. In this paper we take these two lines of work and bring them together. We first study the case in which we have an LTLf agent goal and a GR(1) assumption. We then add to the framework safety conditions for both the environment and the agent, obtaining a highly expressive yet still scalable form of LTL synthesis. 
    more » « less
  2. LTL synthesis is the problem of synthesizing a reactive system from a formal specification in Linear Temporal Logic. The extension of allowing for partial observability, where the system does not have direct access to all relevant information about the environment, allows generalizing this problem to a wider set of real-world applications, but the difficulty of implementing such an extension in practice means that it has remained in the realm of theory. Recently, it has been demonstrated that restricting LTL synthesis to systems with finite executions by using LTL with finite-horizon semantics (LTLf) allows for significantly simpler implementations in practice. With the conceptual simplicity of LTLf, it becomes possible to explore extensions such as partial observability in practice for the first time. Previous work has analyzed the problem of LTLf synthesis under partial observability theoretically and suggested two possible algorithms, one with 3EXPTIME and another with 2EXPTIME complexity. In this work, we first prove a complexity lower bound conjectured in earlier work. Then, we complement the theoretical analysis by showing how the two algorithms can be integrated in practice into an established framework for LTLf synthesis. We furthermore identify a third, MSO-based, approach enabled by this framework. Our experimental evaluation reveals very different results from what the theory seems to suggest, with the 3EXPTIME algorithm often outperforming the 2EXPTIME approach. Furthermore, as long as it is able to overcome an initial memory bottleneck, the MSO-based approach can often outperforms the others. 
    more » « less
  3. We consider the problem of synthesizing good-enough (GE)-strategies for linear temporal logic (LTL) over finite traces or LTLf for short.The problem of synthesizing GE-strategies for an LTL formula φ over infinite traces reduces to the problem of synthesizing winning strategies for the formula (∃Oφ)⇒φ where O is the set of propositions controlled by the system.We first prove that this reduction does not work for LTLf formulas.Then we show how to synthesize GE-strategies for LTLf formulas via the Good-Enough (GE)-synthesis of LTL formulas.Unfortunately, this requires to construct deterministic parity automata on infinite words, which is computationally expensive.We then show how to synthesize GE-strategies for LTLf formulas by a reduction to solving games played on deterministic Büchi automata, based on an easier construction of deterministic automata on finite words.We show empirically that our specialized synthesis algorithm for GE-strategies outperforms the algorithms going through GE-synthesis of LTL formulas by orders of magnitude.

     
    more » « less
  4. The Rust type system guarantees memory safety and data-race freedom. However, to satisfy Rust's type rules, many familiar implementation patterns must be adapted substantially. These necessary adaptations complicate programming and might hinder language adoption. In this paper, we demonstrate that, in contrast to manual programming, automatic synthesis is not complicated by Rust's type system, but rather benefits in two major ways. First, a Rust synthesizer can get away with significantly simpler specifications. While in more traditional imperative languages, synthesizers often require lengthy annotations in a complex logic to describe the shape of data structures, aliasing, and potential side effects, in Rust, all this information can be inferred from the types, letting the user focus on specifying functional properties using a slight extension of Rust expressions. Second, the Rust type system reduces the search space for synthesis, which improves performance. In this work, we present the first approach to automatically synthesizing correct-by-construction programs in safe Rust. The key ingredient of our synthesis procedure is Synthetic Ownership Logic, a new program logic for deriving programs that are guaranteed to satisfy both a user-provided functional specification and, importantly, Rust's intricate type system. We implement this logic in a new tool called RusSOL. Our evaluation shows the effectiveness of RusSOL, both in terms of annotation burden and performance, in synthesizing provably correct solutions to common problems faced by new Rust developers. 
    more » « less
  5. Many systems are naturally modeled as Markov Decision Processes (MDPs), combining probabilities and strategic actions. Given a model of a system as an MDP and some logical specification of system behavior, the goal of synthesis is to find a policy that maximizes the probability of achieving this behavior. A popular choice for defining behaviors is Linear Temporal Logic (LTL). Policy synthesis on MDPs for properties specified in LTL has been well studied. LTL, however, is defined over infinite traces, while many properties of interest are inherently finite. Linear Temporal Logic over finite traces (LTLf ) has been used to express such properties, but no tools exist to solve policy synthesis for MDP behaviors given finite-trace properties. We present two algorithms for solving this synthesis problem: the first via reduction of LTLf to LTL and the second using native tools for LTLf . We compare the scalability of these two approaches for synthesis and show that the native approach offers better scalability compared to existing automaton generation tools for LTL. 
    more » « less