T cell receptor (TCR) studies have grown substantially with the advancement in the sequencing techniques of T cell receptor repertoire sequencing (TCR-Seq). The analysis of the TCR-Seq data requires computational skills to run the computational analysis of TCR repertoire tools. However biomedical researchers with limited computational backgrounds face numerous obstacles to properly and efficiently utilizing bioinformatics tools for analyzing TCR-Seq data. Here we report pyTCR, a computational notebook-based solution for comprehensive and scalable TCR-Seq data analysis. Computational notebooks, which combine code, calculations, and visualization, are able to provide users with a high level of flexibility and transparency for the analysis. Additionally, computational notebooks are demonstrated to be user-friendly and suitable for researchers with limited computational skills. Our tool has a rich set of functionalities including various TCR metrics, statistical analysis, and customizable visualizations. The application of pyTCR on large and diverse TCR-Seq datasets will enable the effective analysis of large-scale TCR-Seq data with flexibility, and eventually facilitate new discoveries. 
                        more » 
                        « less   
                    
                            
                            Rigorous benchmarking of T-cell receptor repertoire profiling methods for cancer RNA sequencing
                        
                    
    
            The ability to identify and track T-cell receptor (TCR) sequences from patient samples is becoming central to the field of cancer research and immunotherapy. Tracking genetically engineered T cells expressing TCRs that target specific tumor antigens is important to determine the persistence of these cells and quantify tumor responses. The available high-throughput method to profile TCR repertoires is generally referred to as TCR sequencing (TCR-Seq). However, the available TCR-Seq data are limited compared with RNA sequencing (RNA-Seq). In this paper, we have benchmarked the ability of RNA-Seq-based methods to profile TCR repertoires by examining 19 bulk RNA-Seq samples across 4 cancer cohorts including both T-cell-rich and T-cell-poor tissue types. We have performed a comprehensive evaluation of the existing RNA-Seq-based repertoire profiling methods using targeted TCR-Seq as the gold standard. We also highlighted scenarios under which the RNA-Seq approach is suitable and can provide comparable accuracy to the TCR-Seq approach. Our results show that RNA-Seq-based methods are able to effectively capture the clonotypes and estimate the diversity of TCR repertoires, as well as provide relative frequencies of clonotypes in T-cell-rich tissues and low-diversity repertoires. However, RNA-Seq-based TCR profiling methods have limited power in T-cell-poor tissues, especially in highly diverse repertoires of T-cell-poor tissues. The results of our benchmarking provide an additional appealing argument to incorporate RNA-Seq into the immune repertoire screening of cancer patients as it offers broader knowledge into the transcriptomic changes that exceed the limited information provided by TCR-Seq. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2135954
- PAR ID:
- 10483237
- Publisher / Repository:
- Briefings in Bioinformatics
- Date Published:
- Journal Name:
- Briefings in Bioinformatics
- Volume:
- 24
- Issue:
- 4
- ISSN:
- 1467-5463
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The successful development and implementation of precision immuno-oncology therapies requires a deeper understanding of the immune architecture at a patient level. T-cell receptor (TCR) repertoire sequencing is a relatively new technology that enables monitoring of T-cells, a subset of immune cells that play a central role in modulating immune response. These immunologic relationships are complex and are governed by various distributional aspects of an individual patient's tumor profile. We propose Bayesian QUANTIle regression for hierarchical COvariates (QUANTICO) that allows simultaneous modeling of hierarchical relationships between multilevel covariates, conducts explicit variable selection, estimates quantile and patient-specific coefficient effects, to induce individualized inference. We show QUANTICO outperforms existing approaches in multiple simulation scenarios. We demonstrate the utility of QUANTICO to investigate the effect of TCR variables on immune response in a cohort of lung cancer patients. At population level, our analyses reveal the mechanistic role of T-cell proportion on the immune cell abundance, with tumor mutation burden as an important factor modulating this relationship. At a patient level, we find several outlier patients based on their quantile-specific coefficient functions, who have higher mutational rates and different smoking history.more » « less
- 
            The diverse T cell receptor (TCR) repertoire confers the ability to recognize an almost unlimited array of antigens. Characterization of antigen specificity of tumor-infiltrating lymphocytes (TILs) is key for understanding antitumor immunity and for guiding the development of effective immunotherapies. Here, we report a large-scale comprehensive examination of the TCR landscape of TILs across the spectrum of pediatric brain tumors, the leading cause of cancer-related mortality in children. We show that a T cell clonality index can inform patient prognosis, where more clonality is associated with more favorable outcomes. Moreover, TCR similarity groups’ assessment revealed patient clusters with defined human leukocyte antigen associations. Computational analysis of these clusters identified putative tumor antigens and peptides as targets for antitumor T cell immunity, which were functionally validated by T cell stimulation assays in vitro. Together, this study presents a framework for tumor antigen prediction based on in situ and in silico TIL TCR analyses. We propose that TCR-based investigations should inform tumor classification and precision immunotherapy development.more » « less
- 
            Transgenic coexpression of a class I–restricted tumor antigen–specific T cell receptor (TCR) and CD8αβ (TCR8) redirects antigen specificity of CD4 + T cells. Reinforcement of biophysical properties and early TCR signaling explain how redirected CD4 + T cells recognize target cells, but the transcriptional basis for their acquired antitumor function remains elusive. We, therefore, interrogated redirected human CD4 + and CD8 + T cells by single-cell RNA sequencing and characterized them experimentally in bulk and single-cell assays and a mouse xenograft model. TCR8 expression enhanced CD8 + T cell function and preserved less differentiated CD4 + and CD8 + T cells after tumor challenge. TCR8 + CD4 + T cells were most potent by activating multiple transcriptional programs associated with enhanced antitumor function. We found sustained activation of cytotoxicity, costimulation, oxidative phosphorylation– and proliferation-related genes, and simultaneously reduced differentiation and exhaustion. Our study identifies molecular features of TCR8 expression that can guide the development of enhanced immunotherapies.more » « less
- 
            null (Ed.)Single cell RNA-sequencing (scRNA-seq) technology enables comprehensive transcriptomic profiling of thousands of cells with distinct phenotypic and physiological states in a complex tissue. Substantial efforts have been made to characterize single cells of distinct identities from scRNA-seq data, including various cell clustering techniques. While existing approaches can handle single cells in terms of different cell (sub)types at a high resolution, identification of the functional variability within the same cell type remains unsolved. In addition, there is a lack of robust method to handle the inter-subject variation that often brings severe confounding effects for the functional clustering of single cells. In this study, we developed a novel data denoising and cell clustering approach, namely CIBS, to provide biologically explainable functional classification for scRNA-seq data. CIBS is based on a systems biology model of transcriptional regulation that assumes a multi-modality distribution of the cells’ activation status, and it utilizes a Boolean matrix factorization approach on the discretized expression status to robustly derive functional modules. CIBS is empowered by a novel fast Boolean Matrix Factorization method, namely PFAST, to increase the computational feasibility on large scale scRNA-seq data. Application of CIBS on two scRNA-seq datasets collected from cancer tumor micro-environment successfully identified subgroups of cancer cells with distinct expression patterns of epithelial-mesenchymal transition and extracellular matrix marker genes, which was not revealed by the existing cell clustering analysis tools. The identified cell groups were significantly associated with the clinically confirmed lymph-node invasion and metastasis events across different patients. Index Terms—Cell clustering analysis, Data denoising, Boolean matrix factorization, Cancer microenvirionment, Metastasis.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    