skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The structures of iron silicate glasses with varying iron redox ratios from molecular dynamics simulations and EXAFS analysis
Iron oxides are frequently found in natural and industrial glass compositions and can affect various physical and chemical properties of the glasses and their melts. Thus, a fundamental understanding of iron-bearing silicate melts and glasses is of both scientific and technological importance. This study investigates the structures of sodium iron silicate glasses with compositions of NaFeSiO4, NaFeSi2O6, NaFeSi3O8, and Na5FeSi4O12 using molecular dynamics simulations in combination with Extended X-ray Absorption Fine Structure (EXAFS) characterizations. Short and medium range structural features of these glasses support that ferrous (Fe2+) and ferric (Fe3+) ions play the roles of network modifier and network former, respectively, with the Fe oxidation states playing an important role in the polymerization of the glass network. These simulation results agree well with newly measured room temperature EXAFS spectra. The simulated glass structures were also compared to the melts structures with the same composition but different redox ratios. The average coordination numbers of the cations were found to be affected both by the melt temperature and iron redox ratio.  more » « less
Award ID(s):
1662288
PAR ID:
10483259
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Journal of Non-Crystalline Solids
Volume:
624
Issue:
C
ISSN:
0022-3093
Page Range / eLocation ID:
122713
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Iron oxide is commonly found in natural or industrial glass compositions and can exist as ferrous (Fe2+) or ferric (Fe3+) species, with their ratios depending on glass composition, temperature, pressure and the redox reactions during the glass forming process. The iron redox ratio plays an important role on silicate glass structures and consequently various properties. This work aims to study the effect of iron oxide, and particularly the iron redox ratio, on the structures of borosilicate and boroaluminosilicate glasses using molecular dynamics simulations with newly developed iron potential parameters that are compatible with the borosilicate potentials. The results provide detailed cation coordination states of both iron species and the effect of redox ratio on boron coordination and other structural features. Particularly, competition for charge compensating modifier cations (such as Na+) among the fourfold‐coordinated cations such as B3+, Al3+, and Fe3+is investigated by calculating the cation–cation pair distribution functions and coordination preferential ratios. The results show that the trivalent ferric ions, with a shorter Fe–O bond distance and better defined first coordiation shell with mainly four‐fold coordination, act as a glass former whereas the divalent ferrous ions mainly play the role of glass modifier. The ferrous/ferric ratio (Fe2+/Fe3+) was found to affect the glass chemistry and hence glass properties by regulating the amount of four‐coordinated boron, the fraction of non‐briding oxygen and other features. The results are compared with available experimental data to gain insights of the complex structures and charge compensation schemes of the glass system. 
    more » « less
  2. Fe2O3produced in a deep magma ocean in equilibrium with core-destined alloy sets the early redox budget and atmospheric composition of terrestrial planets. Previous experiments (≤28 gigapascals) and first-principles calculations indicate that a deep terrestrial magma ocean produces appreciable Fe3+but predict Fe3+/ΣFe ratios that conflict by an order of magnitude. We present Fe3+/ΣFe of glasses quenched from melts equilibrated with Fe alloy at 38 to 71 gigapascals, 3600 to 4400 kelvin, analyzed by synchrotron Mössbauer spectroscopy. These indicate Fe3+/ΣFe of 0.056 to 0.112 in a terrestrial magma ocean with mean alloy-silicate equilibration pressures of 28 to 53 gigapascals, producing sufficient Fe2O3to account for the modern bulk silicate Earth redox budget and surficial conditions near or more oxidizing than the iron-wüstite buffer, which would stabilize a primitive CO- and H2O-rich atmosphere. 
    more » « less
  3. Abstract Observations of high ferric iron content in diamond garnet inclusions and mantle plume melts suggest a highly heterogeneous distribution of ferric iron in the mantle. Recycling of oxidized materials such as carbonates from Earth’s surface by subduction could explain the observed variations. Here we present high-pressure high-temperature multi-anvil experiments to determine the redox reactions between calcium-, magnesium-, or iron-carbonate and ferrous iron-bearing silicate mineral (garnet or fayalite) at conditions representative of subduction zones with intermediate thermal structures. We show that both garnet and fayalite can be oxidized to ferric iron-rich garnets accompanied by reduction of calcium carbonate to form graphite. The ferric iron content in the synthetic garnets increases with increasing pressure, and is correlated with the Ca content in the garnets. We suggest that recycled sedimentary calcium carbonate could influence the evolution of the mantle oxidation state by efficiently increasing the ferric iron content in the deep upper mantle. 
    more » « less
  4. Abstract The glassy solid electrolyte Lithium phosphorous oxynitride (LiPON) has been widely researched in thin film solid state battery format due to its outstanding stability when cycled against lithium. In addition, recent reports show thin film LiPON having interesting mechanical behaviors, especially its ability to resist micro‐scale cracking via densification and shear flow. In the present study, we have produced bulk LiPON glasses with varying nitrogen contents by ammonolysis of LiPO3melts. The resulting compositions were determined to be LiPO3‐3z/2Nz, where 0 ≤ z ≤ 0.75, and the z value of 0.75 is among the highest ever reported for this series of LiPON glasses. The short‐range order structures of the different resulting compositions were characterized by infrared, Raman,31P magic angle spinning nuclear magnetic resonance, and X‐ray photoelectron spectroscopies. Instrumented nano‐indentation was used to measure mechanical properties. It was observed that similar to previous studies, both trigonally coordinated (Nt) and doubly bonded (Nd) N co‐exist in the glasses in about the same amounts forz ≤ 0.36, the limit of N content in most previous studies. For glasses withz > 0.36, it was found that the fraction of the Ntincreased significantly while the fraction of Ndcorrespondingly decreased. The incorporation of nitrogen increased both the elastic modulus and hardness of the glass by approximately a factor of 1.5 when N/P ratio reaches 0.75. At the same time, an apparent embrittlement of the glass was observed due to nitridation, which was revealed by nanoindentation with an extra sharp nanoindenter tip. 
    more » « less
  5. Network glass structures are commonly characterized by the network formers and their linkage but modifiers can also play an important role on various features of glass structures. In this work, we investigated the effect of cation field strength (CFS) of common modifier cations with large differences of CFS on the structures of aluminoborosilicate glasses by performing molecular dynamics (MD) simulations with recently developed potentials. It was found that modifier cations with higher CFS such as Mg2+ significantly reduced the fraction of fourfold coordinated boron, suggesting that the cations with higher field strength favor nonbridging oxygen generation in the silicate network and are less effective for charge compensation. The findings from our MD simulations are compared with the results from NMR and Raman spectroscopy studies in the literature as well as those from other MD simulations. Insights of the CFS effect on glass structures and the structural role of Mg2+ ions are gained from these simulations results and related discussions 
    more » « less