skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 AM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on May 22, 2025

Title: Pursuer Coordination Against a Fast Evader via Coverage Control
Scalable pursuer coordination for reach-avoid games against a fast evader are developed leveraging coverage control over manifolds. The maintenance of a manifold, termed defense surface, prevents the evader and its target from occupying the same half-space and shown sufficient as a cooperative capture strategy. Nonlinear control synthesis continually reconfigures the pursuers to enable a defense surface via coverage. Simulation results empirically validate that the proposed condition  more » « less
Award ID(s):
1931821
PAR ID:
10483341
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Automatic Control
ISSN:
0018-9286
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the problem of pursuit-evasion for a single pursuer and an evader in polygonal environments where the players have visibility constraints. The pursuer is tasked with catching the evader as quickly as possible while the evader tries to avoid being captured. We formalize this problem as a zero-sum game where the players have private observations and conflicting objectives.One of the challenging aspects of this game is due to limited visibility. When a player, for example, the pursuer does not see the evader, it needs to reason about all possible locations of the evader. This causes an exponential increase in the size of the state space as compared to the arena size. To overcome the challenges associated with large state spaces, we introduce a new learning-based method that compresses the game state and uses it to plan actions for the players. The results indicate that our method outperforms the existing reinforcement learning methods, and performs competitively against the current state-of-the-art randomized strategy in complex environments. 
    more » « less
  2. Time-optimal evading strategies for pursuit-evasion problems involving two pursuers and one evader are analyzed. It is assumed that both pursuers are identical and possess higher speed capabilities when compared to the evader. The problems are categorized into two scenarios, which are based on the evader's information provided to the pursuers. In the rst scenario, the pursuers have information of the evader's position and velocity at each instant of time and follow a constant bearing strategy. In the second scenario, the pursuers have only positional information of the evader and follow a pure pursuit strategy. 
    more » « less
  3. null (Ed.)
    Among the most fundamental tools for social network analysis are centrality measures, which quantify the importance of every node in the network. This centrality analysis typically disregards the possibility that the network may have been deliberately manipulated to mislead the analysis. To solve this problem, a recent study attempted to understand how a member of a social network could rewire the connections therein to avoid being identified as a leader of that network. However, the study was based on the assumption that the network analyzer—the seeker—is oblivious to any evasion attempts by the evader. In this paper, we relax this assumption by modeling the seeker and evader as strategic players in a Bayesian Stackelberg game. In this context, we study the complexity of various optimization problems, and analyze the equilibria of the game under different assumptions, thereby drawing the first conclusions in the literature regarding which centralities the seeker should use to maximize the chances of detecting a strategic evader. 
    more » « less
  4. This paper studies a multi-robot visibility-based pursuit-evasion problem in which a group of pursuer robots are tasked with detecting an evader within a two dimensional polygonal environment. The primary contribution is a novel formulation of the pursuit-evasion problem that modifies the pursuers' objective by requiring that the evader still be detected, even in spite of the failure of any single pursuer robot. This novel constraint, whereby two pursuers are required to detect an evader, has the benefit of providing redundancy to the search, should any member of the team become unresponsive, suffer temporary sensor disruption/failure, or otherwise become incapacitated. Existing methods, even those that are designed to respond to failures, rely on the pursuers to replan and update their search pattern to handle such occurrences. In contrast, the proposed formulation produces plans that are inherently tolerant of some level of disturbance. Building upon this new formulation, we introduce an augmented data structure for encoding the problem state and a novel sampling technique to ensure that the generated plans are robust to failures of any single pursuer robot. An implementation and simulation results illustrating the effectiveness of this approach are described. 
    more » « less
  5. null (Ed.)
    Given a two-dimensional polygonal space, the multi-robot visibility-based pursuit-evasion problem tasks several pursuer robots with the goal of establishing visibility with an arbitrarily fast evader. The best known complete algorithm for this problem takes time doubly exponential in the number of robots. However, sampling-based techniques have shown promise in generating feasible solutions in these scenarios. One of the primary drawbacks to employing existing sampling-based methods is that existing algorithms have long execution times and high failure rates for complex environments. This paper addresses that limitation by proposing a new algorithm that takes an environment as its input and returns a joint motion strategy which ensures that the evader is captured by one of the pursuers. Starting with a single pursuer, we sequentially construct Sample-Generated Pursuit-Evasion Graphs to create such a joint motion strategy. This sequential graph structure ensures that our algorithm will always terminate with a solution, regardless of the complexity of the environment. We describe an implementation of this algorithm and present quantitative results that show significant improvement in comparison to the existing algorithm. 
    more » « less