skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Maximizing Submodular Functions under Submodular Constraints
We consider the problem of maximizing submodular functions under submodular constraints by formulating the problem in two ways: \SCSKC and \DiffC. Given two submodular functions $$f$$ and $$g$$ where $$f$$ is monotone, the objective of \SCSKC problem is to find a set $$S$$ of size at most $$k$$ that maximizes $f(S)$ under the constraint that $$g(S)\leq \theta$$, for a given value of $$\theta$$. The problem of \DiffC focuses on finding a set $$S$$ of size at most $$k$$ such that $h(S) = f(S)-g(S)$$ is maximized. It is known that these problems are highly inapproximable and do not admit any constant factor multiplicative approximation algorithms unless NP is easy. Known approximation algorithms involve data-dependent approximation factors that are not efficiently computable. We initiate a study of the design of approximation algorithms where the approximation factors are efficiently computable. For the problem of \SCSKC, we prove that the greedy algorithm produces a solution whose value is at least $$(1-1/e)f(\OPT) - A$, where $$A$$ is the data-dependent additive error. For the \DiffC problem, we design an algorithm that uses the \SCSKC greedy algorithm as a subroutine. This algorithm produces a solution whose value is at least $$(1-1/e)h(\OPT)-B$, where $$B$$ is also a data-dependent additive error. A salient feature of our approach is that the additive error terms can be computed efficiently, thus enabling us to ascertain the quality of the solutions produced.  more » « less
Award ID(s):
1934884
PAR ID:
10483353
Author(s) / Creator(s):
; ; ;
Editor(s):
Evans, Robin; Shpitser, Ilya
Publisher / Repository:
PMLR
Date Published:
Journal Name:
Uncertainty in Artificial Intelligence, {UAI} 2023
Volume:
216
Page Range / eLocation ID:
1618--1627
Format(s):
Medium: X
Location:
Pittsburgh
Sponsoring Org:
National Science Foundation
More Like this
  1. Megow, Nicole; Smith, Adam (Ed.)
    Maximum weight independent set (MWIS) admits a 1/k-approximation in inductively k-independent graphs [Karhan Akcoglu et al., 2002; Ye and Borodin, 2012] and a 1/(2k)-approximation in k-perfectly orientable graphs [Kammer and Tholey, 2014]. These are a parameterized class of graphs that generalize k-degenerate graphs, chordal graphs, and intersection graphs of various geometric shapes such as intervals, pseudo-disks, and several others [Ye and Borodin, 2012; Kammer and Tholey, 2014]. We consider a generalization of MWIS to a submodular objective. Given a graph G = (V,E) and a non-negative submodular function f: 2^V → ℝ_+, the goal is to approximately solve max_{S ∈ ℐ_G} f(S) where ℐ_G is the set of independent sets of G. We obtain an Ω(1/k)-approximation for this problem in the two mentioned graph classes. The first approach is via the multilinear relaxation framework and a simple contention resolution scheme, and this results in a randomized algorithm with approximation ratio at least 1/e(k+1). This approach also yields parallel (or low-adaptivity) approximations. Motivated by the goal of designing efficient and deterministic algorithms, we describe two other algorithms for inductively k-independent graphs that are inspired by work on streaming algorithms: a preemptive greedy algorithm and a primal-dual algorithm. In addition to being simpler and faster, these algorithms, in the monotone submodular case, yield the first deterministic constant factor approximations for various special cases that have been previously considered such as intersection graphs of intervals, disks and pseudo-disks. 
    more » « less
  2. We study the problem of approximating maximum Nash social welfare (NSW) when allocating m indivisible items among n asymmetric agents with submodular valuations. The NSW is a well-established notion of fairness and efficiency, defined as the weighted geometric mean of agents' valuations. For special cases of the problem with symmetric agents and additive(-like) valuation functions, approximation algorithms have been designed using approaches customized for these specific settings, and they fail to extend to more general settings. Hence, no approximation algorithm with factor independent of m is known either for asymmetric agents with additive valuations or for symmetric agents beyond additive(-like) valuations. In this paper, we extend our understanding of the NSW problem to far more general settings. Our main contribution is two approximation algorithms for asymmetric agents with additive and submodular valuations respectively. Both algorithms are simple to understand and involve non-trivial modifications of a greedy repeated matchings approach. Allocations of high valued items are done separately by un-matching certain items and re-matching them, by processes that are different in both algorithms. We show that these approaches achieve approximation factors of O(n) and O(n log n) for additive and submodular case respectively, which is independent of the number of items. For additive valuations, our algorithm outputs an allocation that also achieves the fairness property of envy-free up to one item (EF1). Furthermore, we show that the NSW problem under submodular valuations is strictly harder than all currently known settings with an e/(e-1) factor of the hardness of approximation, even for constantly many agents. For this case, we provide a different approximation algorithm that achieves a factor of e/(e-1), hence resolving it completely. 
    more » « less
  3. We study the problem of approximating maximum Nash social welfare (NSW) when allocatingmindivisible items amongnasymmetric agents with submodular valuations. TheNSWis a well-established notion of fairness and efficiency, defined as the weighted geometric mean of agents’ valuations. For special cases of the problem with symmetric agents and additive(-like) valuation functions, approximation algorithms have been designed using approaches customized for these specific settings, and they fail to extend to more general settings. Hence, no approximation algorithm with a factor independent ofmwas known either for asymmetric agents with additive valuations or for symmetric agents beyond additive(-like) valuations before this work. In this article, we extend our understanding of theNSWproblem to far more general settings. Our main contribution is two approximation algorithms for asymmetric agents with additive and submodular valuations. Both algorithms are simple to understand and involve non-trivial modifications of a greedy repeated matchings approach. Allocations of high-valued items are done separately by un-matching certain items and re-matching them by different processes in both algorithms. We show that these approaches achieve approximation factors ofO(n) andO(nlogn) for additive and submodular cases, independent of the number of items. For additive valuations, our algorithm outputs an allocation that also achieves the fairness property of envy-free up to one item (EF1). Furthermore, we show that theNSWproblem under submodular valuations is strictly harder than all currently known settings with an\(\frac{\mathrm{e}}{\mathrm{e}-1}\)factor of the hardness of approximation, even for constantly many agents. For this case, we provide a different approximation algorithm that achieves a factor of\(\frac{\mathrm{e}}{\mathrm{e}-1}\), hence resolving it completely. 
    more » « less
  4. null (Ed.)
    We show that the Adaptive Greedy algorithm of Golovin and Krause achieves an approximation bound of (ln(Q/η)+1) for Stochastic Submodular Cover: here Q is the “goal value” and η is the minimum gap between Q and any attainable utility value Q' 
    more » « less
  5. null (Ed.)
    In the classical selection problem, the input consists of a collection of elements and the goal is to pick a subset of elements from the collection such that some objective function f is maximized. This problem has been studied extensively in the data-mining community and it has multiple applications including influence maximization in social networks, team formation and recommender systems. A particularly popular formulation that captures the needs of many such applications is one where the objective function f is a monotone and non-negative submodular function. In these cases, the corresponding computational problem can be solved using a simple greedy (1- 1/e)-approximation algorithm. In this paper, we consider a generalization of the above formulation where the goal is to optimize a function that maximizes the submodular function f minus a linear cost function c. This formulation appears as a more natural one, particularly when one needs to strike a balance between the value of the objective function and the cost being paid in order to pick the selected elements. We address variants of this problem both in an offline setting, where the collection is known apriori, as well as in online settings, where the elements of the collection arrive in an online fashion. We demonstrate that by using simple variants of the standard greedy algorithm (used for submodular optimization) we can design algorithms that have provable approximation guarantees, are extremely efficient and work very well in practice. 
    more » « less