Constraint satisfaction problems (CSPs) and data stream models are two powerful abstractions to capture a wide variety of problems arising in different domains of computer science. Developments in the two communities have mostly occurred independently and with little interaction between them. In this work, we seek to investigate whether bridging the seeming communication gap between the two communities may pave the way to richer fundamental insights. To this end, we focus on two foundational problems: model counting for CSP’s and computation of zeroth frequency moments (F0) for data streams.
Our investigations lead us to observe a striking similarity in the core techniques employed in the algorithmic frameworks that have evolved separately for model counting andF0computation. We design a recipe for translating algorithms developed forF0estimation to model counting, resulting in new algorithms for model counting. We also provide a recipe for transforming sampling algorithm over streams to constraint sampling algorithms. We then observe that algorithms in the context of distributed streaming can be transformed into distributed algorithms for model counting. We next turn our attention to viewing streaming from the lens of counting and show that framingF0estimation as a special case of #DNF counting allows us to obtain a general recipe for a rich class of streaming problems, which had been subjected to case-specific analysis in prior works. In particular, our view yields an algorithm for multidimensional range efficientF0estimation with a simpler analysis.
Pavan, A.; Vinodchandran, N. V.; Bhattacharyya, Arnab; Meel, Kuldeep S.(
, Communications of the ACM)
Constraint satisfaction problems (CSPs) and data stream models are two powerful abstractions to capture a wide variety of problems arising in different domains of computer science. Developments in the two communities have mostly occurred independently and with little interaction between them. In this work, we seek to investigate whether bridging the seeming communication gap between the two communities may pave the way to richer fundamental insights. To this end, we focus on two foundational problems: model counting for CSPs and the computation of the number of distinct elements in a data stream, also known as the zeroth frequency moment (F0) of a data stream.
Our investigations lead us to observe striking similarity in the core techniques employed in the algorithmic frameworks that have evolved separately for model counting and distinct elements computation. We design a recipe for the translation of algorithms developed for distinct elements estimation to that of model counting, resulting in new algorithms for model counting. We then observe that algorithms in the context of distributed streaming can be transformed into distributed algorithms for model counting. We next turn our attention to viewing streaming from the lens of counting and show that framing distinct elements estimation as a special case of #DNF counting allows us to obtain a general recipe for a rich class of streaming problems, which had been subjected to case-specific analysis in prior works.
Pavan, A.; Vinodchandran, N. V.; Meel, Bhattacharya; Meel, Kuldeep(
, Proceedings of the ACM SIGACTSIGMODSIGART Symposium on Principles of Database Systems)
null
(Ed.)
Constraint satisfaction problems (CSP's) and data stream models are two powerful abstractions to capture a wide variety of problems arising in different domains of computer science. Developments in the two communities have mostly occurred independently and with little interaction between them.
In this work, we seek to investigate whether bridging the seeming communication gap between the two communities may pave the way to richer fundamental insights. To this end, we focus on two foundational problems: model counting for CSP's and computation of zeroth frequency moments $(F_0)$ for data streams.
Our investigations lead us to observe striking similarity in the core techniques employed in the algorithmic frameworks that have evolved separately for model counting and $F_0$ computation. We design a recipe for translation of algorithms developed for $F_0$ estimation to that of model counting, resulting in new
algorithms for model counting. We then observe that algorithms in the context of distributed streaming can be transformed to distributed algorithms for model counting. We next turn our attention to viewing streaming from the lens of counting and show that framing $F_0$ estimation as a special case of DNF counting allows us to obtain a general recipe for a rich class of streaming problems, which had been subjected to case-specific analysis in prior works. In particular, our view yields a state-of-the art algorithm for multidimensional range efficient $F_0$ estimation with a simpler analysis.
Constraint satisfaction problems (CSPs) and data stream models are two powerful abstractions to capture a wide variety of problems arising in different domains of computer science. Developments in the two communities have mostly occurred independently and with little interaction between them. In this work, we seek to investigate whether bridging the seeming communication gap between the two communities may pave the way to richer fundamental insights. To this end, we focus on two foundational problems: model counting for CSPs and computation of zeroth frequency moments (F0) for data streams.
Ben-Eliezer, Omri; Jayaram, Rajesh; Woodruff, David P.; Yogev, Eylon(
, Journal of the ACM)
We investigate the adversarial robustness of streaming algorithms. In this context, an algorithm is considered robust if its performance guarantees hold even if the stream is chosen adaptively by an adversary that observes the outputs of the algorithm along the stream and can react in an online manner. While deterministic streaming algorithms are inherently robust, many central problems in the streaming literature do not admit sublinear-space deterministic algorithms; on the other hand, classical space-efficient randomized algorithms for these problems are generally not adversarially robust. This raises the natural question of whether there exist efficient adversarially robust (randomized) streaming algorithms for these problems. In this work, we show that the answer is positive for various important streaming problems in the insertion-only model, including distinct elements and more generally F p -estimation, F p -heavy hitters, entropy estimation, and others. For all of these problems, we develop adversarially robust (1+ε)-approximation algorithms whose required space matches that of the best known non-robust algorithms up to a poly(log n , 1/ε) multiplicative factor (and in some cases even up to a constant factor). Towards this end, we develop several generic tools allowing one to efficiently transform a non-robust streaming algorithm into a robust one in various scenarios.
Ajtai, M.; Braverman, V.; Jayram, T.S.; Silwal, S.; Sun, A.; Woodruff, D.P.; Zhou, S.(
, Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS 2022))
There has been a flurry of recent literature studying streaming algorithms for which the input stream is chosen adaptively by a black-box adversary who observes the output of the streaming algorithm at each time step. However, these algorithms fail when the adversary has access to the internal state of the algorithm, rather than just the output of the algorithm. We study streaming algorithms in the white-box adversarial model, where the stream is
chosen adaptively by an adversary who observes the entire internal state of the algorithm at each time step. We show that nontrivial algorithms are still possible. We first give a randomized algorithm for the L1-heavy hitters problem that outperforms the optimal deterministic Misra-Gries algorithm on long streams. If the white-box adversary is computationally bounded, we use cryptographic techniques to reduce the memory of our L1-heavy hitters algorithm even further
and to design a number of additional algorithms for graph, string, and linear algebra problems. The existence of such algorithms is surprising, as the streaming algorithm does not even have a secret key in this model, i.e., its state is entirely known to the adversary. One algorithm we design is for estimating the number of distinct elements in a stream with insertions and deletions achieving a multiplicative approximation and sublinear space; such an algorithm is impossible for deterministic algorithms. We also give a general technique that translates any two-player deterministic communication lower bound to a lower bound for randomized algorithms robust to a white-box adversary. In particular, our results show that for all p ≥ 0, there exists a constant Cp > 1 such that any
Cp-approximation algorithm for Fp moment estimation in insertion-only streams with a white-box adversary requires Ω(n) space for a universe of size n. Similarly, there is a constant C > 1 such that any C-approximation algorithm in an insertion-only stream for matrix rank requires Ω(n) space with a white-box adversary. These results do not contradict our upper bounds since they assume the adversary has unbounded computational power. Our algorithmic results based on cryptography thus show a separation between computationally bounded and unbounded adversaries. Finally, we prove a lower bound of Ω(log n) bits for the fundamental problem of deterministic approximate counting in a stream of 0’s and 1’s, which holds even if we know how many total stream updates we have seen so far at each point in the stream. Such a lower bound for approximate counting with additional information was previously unknown, and in our context, it shows a separation between multiplayer deterministic maximum communication and the white-box space complexity of a streaming algorithm
Pavan, A., Vinodchandran, N. V., Bhattacharyya, Arnab, and Meel, Kuldeep S. Model Counting Meets F 0 Estimation. Retrieved from https://par.nsf.gov/biblio/10483354. ACM Transactions on Database Systems 48.3 Web. doi:10.1145/3603496.
Pavan, A., Vinodchandran, N. V., Bhattacharyya, Arnab, & Meel, Kuldeep S. Model Counting Meets F 0 Estimation. ACM Transactions on Database Systems, 48 (3). Retrieved from https://par.nsf.gov/biblio/10483354. https://doi.org/10.1145/3603496
Pavan, A., Vinodchandran, N. V., Bhattacharyya, Arnab, and Meel, Kuldeep S.
"Model Counting Meets F 0 Estimation". ACM Transactions on Database Systems 48 (3). Country unknown/Code not available: ACM. https://doi.org/10.1145/3603496.https://par.nsf.gov/biblio/10483354.
@article{osti_10483354,
place = {Country unknown/Code not available},
title = {Model Counting Meets F 0 Estimation},
url = {https://par.nsf.gov/biblio/10483354},
DOI = {10.1145/3603496},
abstractNote = {Constraint satisfaction problems (CSPs) and data stream models are two powerful abstractions to capture a wide variety of problems arising in different domains of computer science. Developments in the two communities have mostly occurred independently and with little interaction between them. In this work, we seek to investigate whether bridging the seeming communication gap between the two communities may pave the way to richer fundamental insights. To this end, we focus on two foundational problems: model counting for CSP’s and computation of zeroth frequency moments (F0) for data streams. Our investigations lead us to observe a striking similarity in the core techniques employed in the algorithmic frameworks that have evolved separately for model counting andF0computation. We design a recipe for translating algorithms developed forF0estimation to model counting, resulting in new algorithms for model counting. We also provide a recipe for transforming sampling algorithm over streams to constraint sampling algorithms. We then observe that algorithms in the context of distributed streaming can be transformed into distributed algorithms for model counting. We next turn our attention to viewing streaming from the lens of counting and show that framingF0estimation as a special case of #DNF counting allows us to obtain a general recipe for a rich class of streaming problems, which had been subjected to case-specific analysis in prior works. In particular, our view yields an algorithm for multidimensional range efficientF0estimation with a simpler analysis.},
journal = {ACM Transactions on Database Systems},
volume = {48},
number = {3},
publisher = {ACM},
author = {Pavan, A. and Vinodchandran, N. V. and Bhattacharyya, Arnab and Meel, Kuldeep S.},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.