skip to main content


This content will become publicly available on November 8, 2024

Title: Tropical mountain ice core δ 18 O: A Goldilocks indicator for global temperature change

Very high tropical alpine ice cores provide a distinct paleoclimate record for climate changes in the middle and upper troposphere. However, the climatic interpretation of a key proxy, the stable water oxygen isotopic ratio in ice cores (δ18Oice), remains an outstanding problem. Here, combining proxy records with climate models, modern satellite measurements, and radiative-convective equilibrium theory, we show that the tropical δ18Oiceis an indicator of the temperature of the middle and upper troposphere, with a glacial cooling of −7.35° ± 1.1°C (66% CI). Moreover, it severs as a “Goldilocks-type” indicator of global mean surface temperature change, providing the first estimate of glacial stage cooling that is independent of marine proxies as −5.9° ± 1.2°C. Combined with all estimations available gives the maximum likelihood estimate of glacial cooling as −5.85° ± 0.51°C.

 
more » « less
Award ID(s):
1804747 2002506
NSF-PAR ID:
10483422
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Science
Date Published:
Journal Name:
Science Advances
Volume:
9
Issue:
45
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Southern Ocean sea ice plays a central role in the oceanic meridional overturning circulation, transforming globally prevalent watermasses through surface buoyancy loss and gain. Buoyancy loss due to surface cooling and sea ice growth promotes the formation of bottom water that flows into the Atlantic, Indian, and Pacific basins, while buoyancy gain due to sea ice melt helps transform the returning deep flow into intermediate and mode waters. Because northward expansion of Southern Ocean sea ice during the Last Glacial Maximum (LGM; 19–23 kyr BP) may have enhanced deep ocean stratification and contributed to lower atmospheric CO2levels, reconstructions of sea ice extent are critical to understanding the LGM climate state. Here, we present a new sea ice proxy based on the18O/16O ratio of foraminifera (δ18Oc). In the seasonal sea ice zone, sea ice formation during austral winter creates a cold surface mixed layer that persists in the sub‐surface during spring and summer. The cold sub‐surface layer, known as winter water, sits above relatively warm deep water, creating an inverted temperature profile. The unique surface‐to‐deep temperature contrast is reflected in estimates of equilibrium δ18Oc, implying that paired analysis of planktonic and benthic foraminifera can be used to infer sea ice extent. To demonstrate the feasibility of the δ18Ocmethod, we present a compilation ofN. pachydermaandCibicidoidesspp. results from the Atlantic sector that yields an estimate of winter sea ice extent consistent with modern observations.

     
    more » « less
  2. Abstract

    Since the last glacial period, North America has experienced dramatic changes in regional climate, including the collapse of ice sheets and changes in precipitation. We use clumped isotope (∆47) thermometry and carbonate δ18O measurements of glacial and deglacial pedogenic carbonates from the Palouse Loess to provide constraints on hydroclimate changes in the Pacific Northwest. We also employ analysis of climate model simulations to help us further provide constraints on the hydroclimate changes in the Pacific Northwest. The coldest clumped isotope soil temperaturesT(47) (13.5 ± 1.9°C to 17.1 ± 1.7°C) occurred ∼34,000–23,000 years ago. Using a soil‐to‐air temperature transfer function, we estimate Last Glacial Maximum (LGM) mean annual air temperatures of ∼−5.5°C and warmest average monthly temperatures (i.e., mean summer air temperatures) of ∼4.4°C. These data indicate a regional warming of 16.4 ± 2.6°C from the LGM to the modern temperatures of 10.9°C, which was about 2.5–3 times the global average. Proxy data provide locality constraints on the boundary of the cooler anticyclone induced by LGM ice sheets, and the warmer cyclone in the Eastern Pacific Ocean. Climate model analysis suggests regional amplification of temperature anomalies is due to the proximal location of the study area to the Laurentide Ice Sheet margin and the impact of the glacial anticyclone on the region, as well as local albedo. Isotope‐enabled model experiments indicate variations in water δ18O largely reflect atmospheric circulation changes and enhanced rainout upstream that brings more depleted vapor to the region during the LGM.

     
    more » « less
  3. Marine sediments, speleothems, paleo-lake elevations, and ice core methane and δ18O of O2 (δ18Oatm) records provide ample evidence for repeated abrupt meridional shifts in tropical rainfall belts throughout the last glacial cycle. To improve understanding of the impact of abrupt events on the global terrestrial biosphere, we present composite records of δ18Oatm and inferred changes in fractionation by the global terrestrial biosphere (ΔεLAND) from discrete gas measurements in the WAIS Divide (WD) and Siple Dome (SD) Antarctic ice cores. On the common WD timescale, it is evident that maxima in ΔεLAND are synchronous with or shortly follow small-amplitude WD CH4 peaks that occur within Heinrich stadials 1, 2, 4, and 5 – periods of low atmospheric CH4 concentrations. These local CH4 maxima have been suggested as markers of abrupt climate responses to Heinrich events. Based on our analysis of the modern seasonal cycle of gross primary productivity (GPP)-weighted δ18O of terrestrial precipitation (the source water for atmospheric O2 production), we propose a simple mechanism by which ΔεLAND tracks the centroid latitude of terrestrial oxygen production. As intense rainfall and oxygen production migrate northward, ΔεLAND should decrease due to the underlying meridional gradient in rainfall δ18O. A southward shift should increase ΔεLAND. Monsoon intensity also influences δ18O of precipitation, and although we cannot determine the relative contributions of the two mechanisms, both act in the same direction. Therefore, we suggest that abrupt increases in ΔεLAND unambiguously imply a southward shift of tropical rainfall. The exact magnitude of this shift, however, remains under-constrained by ΔεLAND
    more » « less
  4. Abstract

    In 2019, four ice cores were recovered from the world's highest tropical mountain, Nevado Huascarán (Cordillera Blanca, Peru; 9.11°S, 77.61°W). Composite hydroclimate records of the two Col cores (6,050 masl) and the two Summit cores (6,768 masl) are compared to gridded gauge‐analysis and reanalysis climate data for the most recent 60‐year. Spatiotemporal correlation analyses suggest that the ice core oxygen stable isotope (δ18O) record largely reflects tropical Pacific climate variability, particularly in the NINO3.4 region. By extension, the δ18O record is strongly related to rainfall over the Amazon Basin, as teleconnections between the El Niño Southern Oscillation and hydrological behavior are the main drivers of the fractionation of water isotopes. However, on a local scale, modulation of the stable water isotopes appears to be more closely governed by upper atmospheric temperatures than by rainfall amount. Over the last 60 years, the statistical significance of the climate/δ18O relationship has been increasing contemporaneously with the atmospheric and oceanic warming rates and shifts in the Walker circulation. Isotopic records from the Summit appear to be more sensitive to large‐scale temperature changes than the records from the Col. These results may have substantial implications for modeling studies of the behavior of water isotopes at high elevations in the tropical Andes.

     
    more » « less
  5. Abstract

    Measurements of oxygen and hydrogen stable isotopes in precipitation (δ18OPand δ2HP) provide a valuable tool for understanding modern hydrological processes and the empirical foundation for interpreting paleoisotope archives. However, long‐term data sets of modern δ18OPand δ2HPin southern Alaska are entirely absent, thus limiting our insight and application of regionally defined climate‐isotope relationships in this proxy‐rich region. We present and utilize a 13‐year‐long record of event‐based δ18OPand δ2HPdata from Anchorage, Alaska (2005–2018,n = 332), to determine the mechanisms controlling precipitation isotopes. Local surface air temperature explains ~30% of variability in the δ18OPdata with a temperature‐δ18O slope of 0.31 ‰/°C, indicating that δ18OParchives may not be suitable paleo‐thermometers in this region. Instead, back‐trajectory modeling reveals how winter δ18OP2HPreflects synoptic and mesoscale processes in atmospheric circulation that drive changes in the passage of air masses with different moisture sources, transport, and rainout histories. Specifically, meridional systems—with either northerly flow from the Arctic or southerly flow from the Gulf of Alaska—have relatively low δ18OP2HPdue to progressive cooling and removal of precipitation as it condenses with altitude over Alaska's southern mountain ranges. To the contrary, zonally derived moisture from either the North Pacific and/or Bering Sea retains relatively high δ18OP2HPvalues. These new data contribute a better understanding of the modern Alaska water isotope cycle and provide an empirical basis for interpreting paleoisotope archives in context of regional atmospheric circulation.

     
    more » « less